
6.181: Filesystems (pt. 2)

1

Adam Belay <abelay@mit.edu>



Agenda

• Last week:
• Filesystem basics
• Filesystem implementation in xv6

• Today:
• Crash recovery
• Issue: Crashes leave disk in inconsistent state
• Solution: Logging

• Note: Last lecture on xv6 is today
• Up next: Research papers on OSes
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What is crash recovery?

• Imagine you are using the filesystem
• Power is suddenly lost
• The system reboots
• Is the filesystem still usable?
• Is your data still there?
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Why is this a hard problem?

• Filesystems perform multi-step operations
• E.g., reserve an inode, then reserve a bit in the bitmap, then update a 

directory, then fill in an inode, then write data, etc.
• A crash could leave invariants violated

• After rebooting:
• Bad outcome: Crash again due to corrupt FS
• Worse outcome: Silently read/write invalid data
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Suppose we create a file

$ echo hi > x
// block write trace from last week
bwrite: block 33 by ialloc // allocate inode (block 33)
bwrite: block 33 by iupdate // update inode (e.g., set nlink)
bwrite: block 46 by writei // write directory entry
bwrite: block 32 by iupdate // update directory inode with new len
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Suppose we create a file

$ echo hi > x
// block write trace from last week
bwrite: block 33 by ialloc // allocate inode (block 33)
bwrite: block 33 by iupdate // update inode (e.g., set nlink)
bwrite: block 46 by writei // write directory entry
bwrite: block 32 by iupdate // update directory inode with new len

Crash
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What happens?

• Not much bad happens
• Inode allocated and wasted, never usable in future
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What about this order?

$ echo hi > x
// block write trace from last week
bwrite: block 46 by writei // write directory entry
bwrite: block 32 by iupdate // update directory inode with new len
bwrite: block 33 by ialloc // allocate inode (block 33)
bwrite: block 33 by iupdate // update inode (e.g., set nlink)

8

Crash



What happens?

• Disaster!
• Inode could be reallocated again
• Directory points to uninitialized inode
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What order could really happen?
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What order could really happen?

• Kernel (and maybe the disk too) reorders writes to minimize seeks
• In general, any order is possible
• Similar issue to memory model and locking in prior lecture
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What about write?

1. inode addrs[] and len
2. indirect block
3. block content
4. block free bitmap

crash: inode refers to free block -- disaster!
crash: block not free but not used -- not so bad
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What about unlink?

1. block free bitmaps
2. free inode
3. erase dirent
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What should we hope for?

After reboot, run recovery code
1. Internal FS invariants must hold
• e.g., no block is both free and used by an inode

2. All but the last few operations stored on disk
• Data I wrote yesterday should be there!
• But perhaps data at the time of crash will be lost

3. No reordering of data writes
• echo 99 > result ; echo done > status
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Correctness and performance

• Often at odds with one another!
• Disk writes are very slow
• Safety: Write data right away
• Speed: Wait and batch together writes
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Crash recovery

• Arises in all storage systems, e.g., databases
• Many clever solutions
• Performance/correctness tradeoffs
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Solution today: Logging

• Very popular, also known as journaling
• Goal: Atomic system calls w.r.t. crashes
• Goal: Fast recovery (no hour-long fsck)

• xv6: minimal design for safety
• ext3: adds more speed
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Logging basics

• Atomicity: All of system call’s writes applied or none are
• Each atomic op is called a transaction

Three phase operation:
1. Log phase: Record all the writes the system call will perform on disk
2. Commit phase: Record done on disk
3. Install phase: Do the actual disk writes
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Crash recovery w/ logging

• If ”done” found in log, replay all writes
• If “done” not found, ignore entries in log
• Called write-ahead logging

Rules:
• install *none* of a transaction's writes to disk
• until *all* writes are in the log on disk, and the logged writes are 

marked committed
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Why this approach?

• One we’ve installed a transaction on disk…
• We have to do all its writes
• This ensures the transaction is atomic
• Log allows us to detect if all steps in the transaction are there
• If not, we can safely abort the transaction
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The magic of logging

• Crash recovery of complex mutable data structures is hard
• But logging makes it easy, can retrofit on top of existing FS designs
• Compatible with high performance too (w/ some effort)
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Logging in xv6

Buffer Cache In Memory Log

LOG
-----------

On-disk Data

Host memory
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xv6 logging steps

• On write:
• Add blockno to in-memory array
• Keep the data itself in the buffer cache (pinned)

• On commit:
• Write buffered log to disk
• Wait for disk to complete writing (synchronous)
• Write the log header sector to disk

• After commit:
• install (write) the blocks in the log to their location in FS
• Unpin the blocks in the buffer cache
• Write zero to the log header sector on disk
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Recall: On-disk layout

1: Superblock
2: Log head

3: Log blocks

32: Inodes

45: Free block bitmap 
46: Actual data
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Log header?

• An “n” value on disk indicates the commit point
• Nonzero: Indicates a valid transaction is committed on disk
• Zero: Not committed, may not be complete
• Also records block #s that were updated
• Why?

• And the number of blocks in log
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Demo: xv6 logging
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What happened?

1. Create inode
2. Write ‘hi’ to file x
3. Write '\n’ to file x
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Create file x

bwrite 3 // inode, 33
bwrite 4 // directory content, 46
bwrite 5 // directory inode, 32
bwrite 2 // commit (block #s and n)
bwrite 33 // install inode for x
bwrite 46 // install directory content
bwrite 32 // install dir inode
bwrite 2 // mark log "empty”
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Write “hi”

bwrite 3 // bitmap update (45)
bwrite 4 // actual data (746)
bwrite 5 // inode update (33)
bwrite 2 // commit (block #s and n)
bwrite 45 // bitmap
bwrite 746 // a (note: bzero was absorbed)
bwrite 33 // inode (file size)
bwrite 2 // mark log "empty”
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Write “\n”

bwrite 3 // actual data (746)
bwrite 4 // inode update (33)
bwrite 2 // commit (block #s and n)
bwrite 746 // \n
bwrite 33 // inode (file size)
bwrite 2 // mark log "empty”
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Note xv6 assumes disk is fail-stop

• Either an entire sector is written or it is not (no partial writes)
• Difficult to achieve in practice, source of many bugs
• No decay of sectors (no read errors)
• No read of the wrong sector (seek errors)
• Sometimes real disks fail in subtle ways!
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Challenge: Prevent write-back

• Buffer cache holds in-memory copies of disk blocks
• Can’t let the buffer cache write back until logged
• Tricky because cache could run out of memory
• xv6’s solution:
• Ensure buffer cache is big enough
• Pin dirty blocks in buffer cache
• After commit, unpin blocks
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Challenge: Data must fit in log

xv6 solution:
• Compute upper bound on number of blocks each system call could 

write
• Set the log size to be greater than this upper bound
• Break up some system calls into several transactions
• E.g., really large write()’s
• Large writes not atomic, but crash will leave correct prefix
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Challenge: Concurrent syscalls

• Must allow several system calls to log concurrently
• On commit, must write them all to log
• But can’t write data if still in middle of transaction
• xv6 solution:
• Don’t allow new system calls to start if not enough space in log
• Wait for concurrent calls to complete and commit
• Commit happens when in-progress calls reaches zero
• Then wake up any waiting calls
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Challenge: Writes to same block

• Same block could be modified several times in a transaction
• Actually fine because only the last write reflects the final state of the 

block
• So installed blocks reflect the overall committed transaction
• Called “write absorption”, improves performance
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Conclusion

• Logging makes file system transactions atomic
• Either they complete fully or not at all

• Write-ahead logging is the key solution in xv6
• Log written in batches, good for performance
• But now each disk write happens twice!
• And have to wait (synchronous) for disk writes
• Trouble with operations that don’t fit in log

• Overall, performance is quite a bit worse
• Next lecture: How can we make this fast?
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