RISC-V Calling Conventions

6.1810 Fall 2024

C code is compiled to machine instructions

How does the machine work at a lower level?
How does this translation work?

How to interact between C and asm?

Thread 1 hit Breakpoint 1, syscall () at kernel/syscall.
c:165
165 num = x (int %) 0;

<syscall+14> jal ra, <myp
<syscall+18> mv sl,a0
B+>
<syscall+24> addiw a4,s2,-1
<syscall+28> li aby2i
- (A a - Vi

RISC-V abstract machine

No C-like control flow, no concept of variables, types ...

Base ISA: Program counter, 32 general-purpose registers (xO —x31)

RISC-V abstract machine

No C-like control flow, no concept of variables, types ...

Base ISA: Program counter, 32 general-purpose registers (xO —x31)

temporary registers
saved register / frame pointer

function arguments / return values

temporary registers

reg | name | saver | description
X0 | zero | | hardwired zero
x1 | ra | caller | return address
X2 | sp | callee | stack pointer
x3 | gp | | global pointer
x4 | tp [| thread pointer
x5-7 | t6-2 | caller |
x8 | s@/fp | callee |
x9 | s1 | callee | saved register
x10-11 | a0-1 | caller |
x12-17 | a2-7 | caller | function arguments
x18-27 | s2-11 | callee | saved registers
x28-31 | t3-6 | caller |

l l I

pcC

program counter

Translating C to Assembly

Example: sum to (n)

int sum to (int n) {
int acc = 0;
for (int 1 = 0; 1 <= n; 1i++)
acc += 1i;
}

return acc;

{

What does this look like in assembly code?

int sum to (int n)

int acc = 0;

for
acc += i;
}

return acc;

(int 1 = 0;

{

sum to(n)

expects argument in a0

returns result in a0

sum to:

mv t0, a0l

1i a0, O

loop:

add a0, a0, tO
addi t0, t0, -1
bnez t0, loop

loop

t0
a0

a0

t0

t0

a0

a0 + to
t0 - 1

'= 0: pc <-

ret

Limited abstractions in assembly

No local variables and scopes
Only a fixed set of hardware registers

- RISC-V has 32 registers
- Modern CPUs and GPUs have much more

No typed, positional arguments

Limited abstractions in assembly

No local variables and scopes
Only a fixed set of hardware registers

- RISC-V has 32 registers
- Modern CPUs and GPUs have much more

No typed, positional arguments
Assembly instructions directly translated to machine code

- Each instruction translated to 16 or 32 bit sequence

Calling and Returning
Functions in Assembly

How would another function call sum to?

Example main function

main:
11 a0, 10

call sum to

How does the call to sum to work?

How would another function call sum to?

Example main function

main:
1i a0, 10

call sum to

How does the call to sum_to work?

call {label} :=
ra <- pc + 4 ; ra <- address of next instruction

pc <- {label} ; Jump to {label}

Machine doesn't understand labels — translated to either pc-relative or absolute jumps

What are the semantics of return?

ret :=

pc <- ra

What are the semantics of return?

ret :=

pc <- ra

call {label} :=
ra <~ pe + 4)
pc <- {label}

Calling Convention &
the Stack

Limited Registers Can Create Problems

Only 32 registers in RISC V
Function calls another function

- (Called function can use and overwrite some register values
- When we return to the original function, it's register values have been corrupted

Need a convention on who saves what registers?

Where do we save register values?

Example: what's the bug? (hint: it's on the right)

sum then double(n): expects argument in a0,

sum to:
a returns result in a0
mv t0, a0 # t0 <- ao
expects argument in a0
11 a0, O # a0 <= 0
returns result in a0
loop:
sum then double:
add a0, a0, tO # a0 <= a0 + tO0 o o
call sum to
addi t0, tO0, -1 # t0 <- t0 - 1 -
11 t0, 2 # t0 <= 2
bnez t0, loop # 1f t0 !'= 0: pc <= loop
mul a0, a0, tO # a0 <= a0 * tO0
ret
ret
main:
11 a0, 10

call sum then double

What's the issue with the program?

We get an infinite loop

Why7 sum_then double:
call sum to
la €0, 2 # t0 <= 2
mul a0, a0, tO # a0 <- a0 * tO0

ret

main:
1i a0, 10

call sum then double

What's the issue with the program?

We get an infinite loop

Why7 gum then double:
cell sim, te
- sum then double calls the function sum to 1i to, > b £0 <- 2
- Sets the ra register to instruction immediately mul a0, a0, tO # a0 <- a0 * t0
after (11 t0, 2) ret

- Returnin sum then double setspc to ra,
but that does not return it to main

main:
1i a0, 10

call sum_ then double

Fixing the bug

Save ra onto the stackin sum them double
- Allocate space on the stack
- Save ra onto the stack (before calling
sum_to)
- Atthe end, load ra from the stack
- Deallocate stack space
Required coordination between caller and callee
on who saves what
Need convention if including programs from

different sources

sum then double :

addi sp, sp, 16 # function prologue:

sd ra, 0(sp) # make space on stack,
save registers

call sum to

1i t0, 2

mul a0, a0, tO

1d ra, 0 (sp) # function epilogue:

addi sp, sp, -16 # restore registers,
restore stack pointer

ret

Calling Convention

Conventions surrounding this: "calling convention”
How are arguments passed? a0, al, ..., a7, reston the stack

How are values returned? a0, al

Calling Convention

Conventions surrounding this: "calling convention”
How are arguments passed? a0, al, ..., a7, reston the stack
How are values returned? a0, al

Who saves registers?
Designated as caller or callee saved

Q. Could ra be a callee-saved register?

Calling Convention

Conventions surrounding this: "calling convention”
How are arguments passed? a0, al, ..., a7, reston the stack
How are values returned? a0, al
Who saves registers?
Designated as caller or callee saved
Our assembly code should follow this convention
C code generated by GCC follows this convention

— This means that everyone's code can interop

Summary of Calling Convention

pcC

temporary registers
saved register / frame pointer

function arguments / return values

temporary registers
program counter

reg | name | saver | description
X0 | zero | | hardwired zero
x1 | ra | caller | return address
X2 | sp | callee | stack pointer
x3 | gp | | global pointer
x4 | tp | | thread pointer
%5-7 | t0-2 | caller |
x8 | s@/fp | callee |
x9 | s1 | callee | saved register
x10-11 | a0-1 | caller |
x12-17 | a2-7 | caller | function arguments
x18-27 | s2-11 | callee | saved registers
x28-31 | t3-6 | caller |

| | |

Stack Pointer & Frame
Pointer

The Stack, Visually

Stack

return address

previous fp —————

saved registers
local variables

PP . B

return address

e previous fp

$sp —>

saved registers
local variables

return address

previous fp —————

saved registers
local variables

return address

—————— previous fp

saved registers
local variables

return address

previous fp —————

saved registers
local variables

The Stack, Visually

Composed of many stack frames, growing downward (hi — lo)

Stack

return address

previous fp —————

saved registers
local variables

return address

e previous fp

saved registers
local variables

return address

previous fp —————

saved registers
local variables

return address

+—— previous fp

saved registers
local variables

return address

previous fp —————

saved registers
local variables

The Stack, Visually

Composed of many stack frames, growing downward (hi — lo)

sp points to base of current stack
fp points to end of previous stack frame

Stack

return address

previous fp —————

saved registers
local variables

return address

e previous fp

saved registers
local variables

return address

previous fp —————

saved registers
local variables

return address

+—— previous fp

$sp —>

saved registers
local variables

return address

previous fp —————

saved registers
local variables

Stack

The Stack, Visually

Composed of many stack frames, growing downward (hi — lo)

- sp points to base of current stack
- fp points to end of previous stack frame

Why the frame pointer is useful

- The previous frame's fp is a fixed offset (-16) from the
current frame’s £p

- The return address (ra) lives at a fixed offset (-8) from the
current frame’s £p $fp —>

$sp —>

return address

previous fp —————

saved registers
local variables

return address

+—— previous fp

saved registers
local variables

return address

previous fp —————

saved registers
local variables

return address

e previous fp

saved registers
local variables

return address

previous fp —————

saved registers
local variables

Stack

The Stack, Visually

Composed of many stack frames, growing downward (hi — lo)

- sp points to base of current stack
- fp points to end of previous stack frame

Why the frame pointer is useful

- The previous frame's fp is a fixed offset (-16) from the
current frame's fp
- The return address (ra) lives at a fixed offset (-8) from the

return address

previous fp —————

saved registers
local variables

return address

+—— previous fp

saved registers
local variables

return address

previous fp —————

saved registers
local variables

return address

current frame's fp —— previous fp

Can traverse previous stack frames by repeatedly finding $ip ==
the previous fp, and get useful information out of it (e.g. ra)

You'll do this in lab traps! $sp —>

saved registers
local variables

return address

previous fp ——————

saved registers
local variables

Resources

Resources

God bo lt @ Exom_slkgs Add...~ More~ Templates

GDB

C source #1 &

A~ BSave/load +Addnew..~ VVim @c
1 int square(int num) {
2 return num * num;
3}
« |

0x0000000000001000 in ?? ()

(gdb) b syscall

Breakpoint 1 at 0x80001c16: file kernel/syscall.c, line
160.

(gdb) ¢

Continuing.

[Switching to Thread 1.2]

Thread 2 hit Breakpoint 1, syscall () at kernel/syscall.

c:160
warning: Source file is more recent than executable.
160 {

6.191 RISC-V ISA Reference Card

Sponsors intel Go gle think-cell” Share > Policies @ ~

O | RISC-V (32-bits) gec 14.2.0 (Editor #1) # X

ad RISC-V (32-bits) gcc 1420~ (3 @ Compiler options...

A~
1
2
3
4
5
6
7
8

9
10
11
12
13

x> V-

square:

a »

addi
sw
sw
addi
sw
1w
mul
mv
1w
1w
addi
jr

+- s

Sp,sp,-32
ra,28(sp)
50,24 (sp)
s0,sp,32
a0,-20(s0)
a5,-20(s0)
a5,a5,a5
a0,a5
ra,28(sp)
s0,24(sp)
sp,sp,32
ra

Other ~

]

https://godbolt.org/
https://llp.mit.edu/6190/_static/S24A/resources/references/riscv_isa_reference.pdf

