
RISC-V Calling Conventions
6.1810 Fall 2024

C code is compiled to machine instructions

How does the machine work at a lower level?

How does this translation work?

How to interact between C and asm?

RISC-V abstract machine

No C-like control flow, no concept of variables, types ...

Base ISA: Program counter, 32 general-purpose registers (x0 – x31)

RISC-V abstract machine

No C-like control flow, no concept of variables, types ...

Base ISA: Program counter, 32 general-purpose registers (x0 – x31)

Translating C to Assembly

Example: sum_to(n)

 int sum_to(int n) {

 int acc = 0;

 for (int i = 0; i <= n; i++) {

 acc += i;

 }

 return acc;

 }

What does this look like in assembly code?

sum_to(n)

expects argument in a0

returns result in a0

sum_to:

 mv t0, a0 # t0 <- a0

 li a0, 0 # a0 <- 0

loop:

 add a0, a0, t0 # a0 <- a0 + t0

 addi t0, t0, -1 # t0 <- t0 - 1

 bnez t0, loop # if t0 != 0: pc <-

loop

 ret

 int sum_to(int n) {

 int acc = 0;

 for (int i = 0; i <= n; i++) {

 acc += i;

 }

 return acc;

 }

Limited abstractions in assembly

No local variables and scopes

Only a fixed set of hardware registers

- RISC-V has 32 registers
- Modern CPUs and GPUs have much more

No typed, positional arguments

Limited abstractions in assembly

No local variables and scopes

Only a fixed set of hardware registers

- RISC-V has 32 registers
- Modern CPUs and GPUs have much more

No typed, positional arguments

Assembly instructions directly translated to machine code

- Each instruction translated to 16 or 32 bit sequence

Calling and Returning
Functions in Assembly

How would another function call sum_to?

Example main function

main:

 li a0, 10

 call sum_to

How does the call to sum_to work?

How would another function call sum_to?

Example main function
main:

 li a0, 10

 call sum_to

How does the call to sum_to work?
call {label} :=

 ra <- pc + 4 ; ra <- address of next instruction

 pc <- {label} ; jump to {label}

Machine doesn't understand labels – translated to either pc-relative or absolute jumps

What are the semantics of return?

 ret :=

 pc <- ra

What are the semantics of return?

 ret :=

 pc <- ra

()

Calling Convention &
the Stack

Limited Registers Can Create Problems

Only 32 registers in RISC V

Function calls another function

- Called function can use and overwrite some register values
- When we return to the original function, it’s register values have been corrupted

Need a convention on who saves what registers?

Where do we save register values?

Example: what’s the bug? (hint: it’s on the right)
sum_to:

 mv t0, a0 # t0 <- a0

 li a0, 0 # a0 <- 0

loop:

 add a0, a0, t0 # a0 <- a0 + t0

 addi t0, t0, -1 # t0 <- t0 - 1

 bnez t0, loop # if t0 != 0: pc <- loop

 ret

 # sum_then_double(n): expects argument in a0,

returns result in a0

 # expects argument in a0

 # returns result in a0

 sum_then_double:

 call sum_to

 li t0, 2 # t0 <- 2

 mul a0, a0, t0 # a0 <- a0 * t0

 ret

 main:

 li a0, 10

 call sum_then_double

What’s the issue with the program?

We get an infinite loop

Why?

What’s the issue with the program?

We get an infinite loop

Why?

- sum_then_double calls the function sum_to
- Sets the ra register to instruction immediately

after (li t0, 2)
- Return in sum_then_double sets pc to ra,

but that does not return it to main

Fixing the bug

sum_then_double:

 addi sp, sp, 16 # function prologue:

 sd ra, 0(sp) # make space on stack,

 # save registers

 call sum_to

 li t0, 2

 mul a0, a0, t0

 ld ra, 0(sp) # function epilogue:

 addi sp, sp, -16 # restore registers,

 # restore stack pointer

 ret

Save ra onto the stack in sum_them_double

- Allocate space on the stack

- Save ra onto the stack (before calling

sum_to)

- At the end, load ra from the stack

- Deallocate stack space

Required coordination between caller and callee

on who saves what

Need convention if including programs from

different sources

Calling Convention

Conventions surrounding this: "calling convention"

 How are arguments passed? a0, a1, ..., a7, rest on the stack

 How are values returned? a0, a1

Calling Convention

Conventions surrounding this: "calling convention"

 How are arguments passed? a0, a1, ..., a7, rest on the stack

 How are values returned? a0, a1

Who saves registers?

 Designated as caller or callee saved

 Q. Could ra be a callee-saved register?

Calling Convention

Conventions surrounding this: "calling convention"

 How are arguments passed? a0, a1, ..., a7, rest on the stack

 How are values returned? a0, a1

Who saves registers?

 Designated as caller or callee saved

Our assembly code should follow this convention

 C code generated by GCC follows this convention

 → This means that everyone's code can interop

Summary of Calling Convention

Stack Pointer & Frame
Pointer

The Stack, Visually

The Stack, Visually

Composed of many stack frames, growing downward (hi → lo)

The Stack, Visually

Composed of many stack frames, growing downward (hi → lo)

- sp points to base of current stack
- fp points to end of previous stack frame

The Stack, Visually

Composed of many stack frames, growing downward (hi → lo)

- sp points to base of current stack
- fp points to end of previous stack frame

Why the frame pointer is useful

- The previous frame’s fp is a fixed offset (-16) from the
current frame’s fp

- The return address (ra) lives at a fixed offset (-8) from the
current frame’s fp

The Stack, Visually

Composed of many stack frames, growing downward (hi → lo)

- sp points to base of current stack
- fp points to end of previous stack frame

Why the frame pointer is useful

- The previous frame’s fp is a fixed offset (-16) from the
current frame’s fp

- The return address (ra) lives at a fixed offset (-8) from the
current frame’s fp

Can traverse previous stack frames by repeatedly finding
the previous fp, and get useful information out of it (e.g. ra)

You’ll do this in lab traps!

Resources

Resources
Godbolt

GDB

6.191 RISC-V ISA Reference Card

https://godbolt.org/
https://llp.mit.edu/6190/_static/S24A/resources/references/riscv_isa_reference.pdf

