
GDB
GBU Debugger

Why use GDB? [and not only print statements)
● Examining call stack - seeing how functions are called and what

arguments are passed in
● Ability to pause program at any point and see complete state
● No code modification reduces clutter and risk of adding errors

○ Time efficiency in finding where code deviates from your own mental model

When to Use GDB
● When a print statements leads to more questions than answers…

When to Use GDB
● When a print statements leads to more questions than answers…

●

When to Use GDB
● When a print statements leads to more questions than answers…

●

Debuggers allow you to inspect the state of the program right before this
happens - and figure out what went wrong

Getting Started
- In one terminal run make qemu-gdb
- In a second terminal:

- Run gdb
- riscv64-unknown-elf-gdb on Mac or Athena
- gdb-multiarch on Debian, Ubuntu or WSL
- riscv64-linux-gnu-gdb on Arch Linux

GDB Commands
Run help <command-name> if you’re not sure how to use a command

All commands may be abbreviated if unambiguous: c = co = cont = continue

Some additional abbreviations are defined, eg. s = step and si = stepi

Breakpoints
break <location> sets a breakpoint at the specified location

Locations can be memory addresses, or names

Modify breakpoints using delete, disable, enable

info breakpoints prints information about breakpoints

Running
Continue runs code until a breakpoint is encountered or you interrupt it with
control-c

Finish runs code until the current function returns

advance <location> runs code until the instruction pointer gets to the
specified location

Layouts
GDB has a text user interface that shows useful information like code listing,
disassembly, and register contents

layout src shows you the source file

layout asm shows the assembly

layout split shows both the assembly and the source

Stepping
step runs one line of code at a time, When there is a function call, it steps into
the called function

Next does the same thing, except that it steps over function calls

stepi and nexti do the same thing for assembly instructions rather than lines
of code

All take a numerical argument to specify repetition (e.g. step 5). Pressing the
enter key repeats the previous command

Examining
x prints the raw contents of memory in whatever format you specify (x/x for
hexadecimal, x/i for assembly, etc).

print evaluates a C expression and prints the results as its proper type. It is
often more useful than x.

The output from p *((struct elfhdr *0x1000) is much nicer than the output
from x/13x 0x10000

More examining
info registers prints the value of every register

info frame prints the current stack frame

info locals prints the value of every local variable

backtrace prints the backtrace of all stack frames

frame lets you jump between frames

Quality-Of-Life [breakpoints]
tbreak creates a temporary breakpoint - which is automatically removed after
hitting it once.

advance will attempt to run the program to the location specified - and will
automatically stop execution if it never gets there

command allows you to create a mini-script to run as soon as a breakpoint is
reached

Quality-Of-Life [breakpoints]
● break <location> if <condition> sets a breakpoint at the specified

location, but only breaks if the condition is satisfied.

● cond <number> <condition> adds a condition on an existing breakpoint.

Quality-Of-Life [stepping]
skip will automatically skip over any function when stepping through for the
remainder of the execution of the program

info skip shows current skip directives

skip enable and skip disable enable/disable skip directives

Further Reading
GDB is extremely powerful - and worth your time to spend more time learning.

We’ve barely scratched the surface: some other interesting things to note are

● watchpoint : stop execution only when a certain variable is changed
● symbol-file :debug files outside of kernel (like in user)

There are many “GDB quick starts” online! Check them out!

Addendum
Checkoffs for Lab 2 should have been emailed to the designated students.

Please check your email!

