
Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.5840 Distributed System Engineering: Spring 2024

Exam I

Please write your name on the bottom of each page. You have 80 minutes to complete this quiz.

Some questions may be much harder than others. Read them all through first and attack them in
the order that allows you to make the most progress. If you find a question ambiguous, write down
any assumptions you make. Write neatly. In order to receive full credit you must answer each
question as precisely as possible.

You may use class notes, papers, and lab material. You may read them on your laptop, but you
are not allowed to use any network. For example, you may not look at web sites, use ChatGPT, or
communicate with anyone.

Name:

Gradescope E-Mail Address:

Grade histogram for Exam 1

max = 98.25

median = 81.25

µ = 80.32

σ = 9.72

6.5840 Spring 2024, Exam 1 Page 3 of 21

I MapReduce

Have a look at Figure 3(a) in the paper MapReduce: Simplified Data Processing on Large Clusters
by Dean and Ghemawat. The three graphs on the left show the rate of data movement over time
for a MapReduce job that sorts a terabyte of data: the rate at which Maps read their input, the
rate at which intermediate data is shuffled, and the rate at which Reduces write their output. For
these questions you should assume that only this MapReduce job is using the servers and network,
and that there are no failures. Many of the numbers below are derived from looking at the graphs,
and are thus approximate; your reading of the graphs may be somewhat different from our’s; you
should circle the answer that is closest to what you think is correct.

1. [6 points]: Roughly when is the first time at which the sort application’s Reduce()
function is called? Circle the best answer.

– 0 seconds

– 50 seconds

– 150 seconds

– 300 seconds

Answer: The best answer is 150 seconds. No Reduce function can be called until every Map
function has finished; the top graph suggests that the Maps stop running around 150 seconds,
and the paper text mentions 200 seconds.

2. [7 points]: Roughly how long does it take a single application Reduce function to sort its
share of the data (just the sort, not including either the shuffle or the writing of the output)?
Circle the best answer.

– 10 seconds

– 75 seconds

– 200 seconds

– 250 seconds

– 650 seconds

Answer: This question is broken: the application Reduce function does not sort the data.
MapReduce’s reduce task framework does the sort, and (for this application) the application
Reduce function just returns its argument.

Name:

6.5840 Spring 2024, Exam 1 Page 4 of 21

3. [6 points]: Why are there two bumps in the Shuffle graph? That is, why does the Shuffle
graph go up and then down from time 20 to 200, remain at zero for 100 seconds, and then go
up and then down from time 300 to 600? Circle the best answer.

– There are more Map tasks (M = 15,000) than there are machines.

– There are more Reduce tasks (R = 4000) than there are machines.

– There are more Map tasks than there are Reduce tasks.

– The aggregate network throughput is smaller than the aggregate disk throughput.

– The Map tasks consume more CPU time than the Reduce tasks.

Answer: The best answer is the second one (more Reduce tasks than machines). Intermedi-
ate data can only be moved from Map machines to Reduce machines for Reduce tasks that
have been allocated to machines. There are only 1800 machines, so at first only 1800 of the
4000 Reduce tasks are assigned to machines, so only about 1800/4000ths of the shuffles can
happen at first. That’s the first bump. The second bump starts once the first set of Reduce
tasks finishes, moving intermediate data to the machines that will run the remaining Reduces.

4. [7 points]: Why does the shuffle begin a long time before the Map phase has finished?
Circle the best answer.

– There are more Map tasks (M = 15,000) than there are machines.

– There are more Reduce tasks (R = 4000) than there are machines.

– There are more Map tasks than there are Reduce tasks.

– The aggregate network throughput is smaller than the aggregate disk throughput.

– The Map tasks consume more CPU time than the Reduce tasks.

Answer: The best answer is the first one (more Map tasks than machines). Shuffles can start
as soon as Map functions finish. The system runs 1800 Maps at a time; the first of these
finishes a long time before the last of the 15,000 Maps finishes at time 200.

Name:

6.5840 Spring 2024, Exam 1 Page 5 of 21

II Linearizability

These questions concern the material from Lecture 4, Consistency and Linearizability.

You have a service whose state is a single string, and that exposes two RPC operations to clients:
one operation appends the RPC argument to the state, and the other RPC operation returns the
current state. The timelines below indicate the start time, end time, argument string, and reply string
for each client operation. Ax indicates an append operation with argument x, and Ry indicates a
read operation to which the server replied y. The vertical bars indicate the start and end times
of each operation (the times at which the client sends the request, and receives the reply). The
service’s state string starts out empty at the beginning of each history.

For example,

C1: |---Ax---|
C2: |---Ay---|
C3: |--Ryx--|

means that client C1 sent an append RPC with “x” as the argument, C2 sent an append RPC with
“y” as the argument, and C3 read the state and received the reply “yx”.

Name:

6.5840 Spring 2024, Exam 1 Page 6 of 21

Consider this history, in which the reply string sent to C4 has been omitted:

C1: |---Ax---|
C2: |---Ay---|
C3: |---Az---|
C4: |--R?--|

5. [6 points]: Which values could C4’s read yield that are consistent with linearizability?
Circle all of the correct answers.

– xzy

– yxz

– yzx

– xy

– xz

– yx

– zy

Answer: xzy, yxz, xy, and yx. The result C4 receives can’t start with z (since the Az starts
after the Ax finishes); if both x and z appear, x must come first; and it must include both x
and y (since Ax and Ay both finish before the C4’s read starts).

Name:

6.5840 Spring 2024, Exam 1 Page 7 of 21

Now look at this history:

C1: |-------Ax-------|
C2: |---Ay---|
C3: |--Ry--|
C4: |----R?----|

6. [7 points]: Which values could C4’s read yield that are consistent with linearizability?
Circle all of the correct answers.

– y

– x

– yx

– xy

Answer: y and yx. The fact that C3 read y, and that C3’s read finished before C4’s read
started, means that C4’s result must include y, and, if it includes x, the x must come after y.

Name:

6.5840 Spring 2024, Exam 1 Page 8 of 21

III GFS and Raft

After reading the GFS paper (The Google File System by Ghemawat et al.) and the Raft paper (On-
garo and Ousterhout’s In Search of an Understandable Consensus Algorithm (Extended Version)),
Ben replaces the GFS master with a new coordinator that uses Raft. The Raft-based coordinator
provides the same functions as before but replicates the log of operations using 3 Raft peers. All
other parts of GFS stay the same.

Which of the following statements are true? (Circle all that apply)

7. [6 points]:

A. The coordinator can continue operation in the presence of network partitions without
any additional monitoring infrastructure, if one partition with peers is able to achieve a
majority.

B. The coordinator can continue operation correctly even if one of the 3 peers has failed
(and there are no other failures).

C. None of the above are true

Answer: Both A and B are true; these are properties of Raft.

Name:

6.5840 Spring 2024, Exam 1 Page 9 of 21

Ben also considers using Raft for chunk replication. He runs many Raft clusters and has the GFS
master assign chunks to a specific Raft cluster (i.e., each chunk is assigned to one Raft cluster,
consisting of a leader and two followers). GFS clients submit write and append operations for a
chunk to the leader of the Raft cluster for that chunk (i.e., Ben’s design doesn’t implement the
separate data flow). The leader of the Raft cluster replicates write and append operation using the
Raft library. All other parts of GFS (e.g., assigning leases to the leader, client caching locations
of chunk servers, reading from the closest server, and so on) stay the same. (You can assume that
chunk servers have enough disk space for operations to succeed.)

Which of the following statements are true? (Circle all that apply)

8. [7 points]:

A. Unlike the old design, Ben’s design can achieve linearizability for chunk operations.

B. Unlike the old design, Ben’s design can continue operation despite the failure of one
chunk server.

C. By using Raft, Ben’s design allows clients to perform more mutating chunk operations
per second than the old design.

D. Raft’s snapshots allow a chunk server to catch up in a few seconds if has been down for
a long time (assuming the same network as in the GFS paper).

E. None of the above are true

Answer: None of the above are true. A is false because the client’s cache that maps file names
to chunk handles can yield stale results. B is false because the old design can continue despite one
failure as well. C is false because Ben’s scheme moves data less efficiently (via the leader, rather
than the separate data flow). D is false because the snapshot mechanism sends the leader’s entire
database of chunks, which will likely take far longer than a few seconds.

Name:

6.5840 Spring 2024, Exam 1 Page 10 of 21

IV Raft

Consider the Raft paper (Ongaro and Ousterhout’s In Search of an Understandable Consensus
Algorithm (Extended Version)). Ben wonders what the impact of network behavior is on Raft’s
performance. Ben runs a Raft-replicated server that receives many client requests. If the network
delivers AppendEntries RPCs in order, Ben’s Raft implementation is fast (i.e., completes many
client requests per second). But, if the network delivers AppendEntries frequently out of order,
Ben’s Raft implementation performs badly (i.e., completes fewer client requests per second). Using
the rules in Figure 2 explain why this is the case.

9. [6 points]:

Answer: This question is broken. Figure 2 implies that each AppendEntries should include all
as-yet-unacknowledged log entries. So if there are two such RPCs outstanding, the one that was
sent second contains a copy of all the log entries in the first. This means that, if the second RPC
arrives first, it will be accepted. So it’s not clear why Ben would see any different performance due
to out-of-order delivery.

Name:

6.5840 Spring 2024, Exam 1 Page 11 of 21

V Lab 3A-3C

Alyssa is implementing Raft as in Lab 3A-3C. She implements advancing the commitIndex at the
leader (i.e., last bullet of Leaders in Fig 2) as follows:

func (rf *Raft) advanceCommit() {
start := rf.commitIndex + 1
if start < rf.log.start() { // on restart start could be 1

start = rf.log.start()
}
for index := start; index <= rf.log.lastindex(); index++ {

if rf.log.entry(index).Term != rf.currentTerm { // 5.4
continue // ***

}
n := 1 // leader always matches
for i := 0; i < len(rf.peers); i++ {

if i != rf.me && rf.matchIndex[i] >= index {
n += 1

}
}
if n > len(rf.peers)/2 { // a majority?

DPrintf("%v: Commit %v\n", rf.me, index)
rf.commitIndex = index

}
}

}

Assume that all omitted parts of Alyssa’s code are correct.

Name:

6.5840 Spring 2024, Exam 1 Page 12 of 21

Ben argues that the line marked with “***” could be replaced by a break statement so that the loop
terminates immediately.

10. [7 points]: Explain what could go wrong if one adopted Ben’s proposal; please include
a specific sequence of events to illustrate your answer.

Answer: If there’s a term mis-match, the leader won’t be able to commit any further log entries.
The paper’s Figure 8e shows an example of such a scenario.

Name:

6.5840 Spring 2024, Exam 1 Page 13 of 21

VI More lab 3A-3C

Alyssa is implementing Raft as in Lab 3A-3C. She implements the rule for conversion to follower
in her AppendEntries RPC handler as shown below:

func (rf *Raft) convertToFollower(term int) {
rf.state = Follower
rf.votedFor = -1
rf.currentTerm = term
rf.persist()

}

func (rf *Raft) AppendEntries(args *AppendEntriesArgs,
reply *AppendEntriesReply) {

rf.mu.Lock()
defer rf.mu.Unlock()

if args.Term >= rf.currentTerm {

rf.convertToFollower(args.Term)

}

...

}

Assume that all omitted parts of Alyssa’s code are correct.

Name:

6.5840 Spring 2024, Exam 1 Page 14 of 21

11. [6 points]: Describe a specific sequence of events that would cause Alyssa’s imple-
mentation to break the safety guarantees provided by Raft.

Answer: The code shown can cause a peer to forget it has cast a vote for the current term. Suppose
peer P1 has been elected for this term. The peers that elected it may forget that they voted for P1.
Then some other peer P2 may become candidate for this term, and get votes from those forgetful
peers, and become a second leader for the same term. This will lead to split brain.

Name:

6.5840 Spring 2024, Exam 1 Page 15 of 21

VII ZooKeeper

Refer to ZooKeeper: Wait-free coordination for Internet-scale systems by Hunt, Konar, Junqueira,
and Reed, and to the notes for Lecture 9.

The code fragments below are simplified versions of how something like GFS or MapReduce might
use ZooKeeper to elect a coordinator, and for that coordinator to store state such as the assignments
of GFS data to chunkservers.

Suppose server S1 executes the following code to become elected and to then store coordinator
state in /A and /B. Initially, znode /coord-lock does not exist, znode /A starts out containing A0,
and znode /B starts out containing B0.

s = openSession()
if create(s, "/coord-lock", data="S1", ephemeral=true) == true:

setData(s, "/A", "A1", version=-1)
setData(s, "/B", "B1", version=-1)

12. [7 points]: Briefly explain why, for coordinator election, it makes sense that /coord-lock
should be an ephemeral znode rather than a regular znode.

Answer: If a server is elected as coordinator, and then fails, ZooKeeper automatically deletes the
ephemeral /coord-lock; now another server can create that file and become coordinator.

Name:

6.5840 Spring 2024, Exam 1 Page 16 of 21

S1’s create() finishes and returns true to indicate success. But just after that, and before ZooKeeper
has received S1’s setData() requests, ZooKeeper decides that S1 has failed, and ZooKeeper termi-
nates S1’s session.

After ZooKeeper terminates S1’s session, server S2 runs this to become coordinator:

s = openSession()
if create(s, "/coord-lock", data="S2", ephemeral=true) == true:

setData(s, "/A", "A2", version=-1)
setData(s, "/B", "B2", version=-1)

However, S1 is actually still alive, and it proceeds to send the two setData() requests, and they
arrive at ZooKeeper.

Then client C1 reads /B and /A and sees B2 and A2, respectively.

Now a different client, C2, reads /B, and then reads /A. Both reads succeed.

13. [6 points]: Given the way ZooKeeper works, what can C2 observe? Circle all of the
possible read results.

/B /A

B0 A0
B0 A1
B0 A2
B2 A0
B2 A1

Answer: B0 A0 and B0 A2 are the only possible results. B0 is possible because, in the
absence of other constraints, ZooKeeper can yield stale data to reads. A1 is never possible
because ZooKeeper terminated S1’s session before ZooKeeper receive S1’s setData()s, so
ZooKeeper ignore those setData()s. B2 A0 is not possible since, once ZooKeeper has re-
vealed a write to a client, the “Linearizable writes” guarantee in Section 2.3 implies that all
previous writes have been applied.

Name:

6.5840 Spring 2024, Exam 1 Page 17 of 21

VIII Grove

In the ApplyReadonly function in Figure 7, Ben decides to delete the check for s.waitForCommitted().
The new code is as as follows:

func (s *Server) ApplyReadonly(op) Result {
s.mutex.Lock()

if s.leaseExpiry > GetTimeRange().latest {
e := s.epoch
idx, res := s.stateLogger.LocalRead(op)
s.mutex.Unlock()
return res

} else {
s.mutex.Unlock()
return ErrRetry

}
}

14. [7 points]: Explain why this modification can result in non-linearizable reads.

Answer: If a Grove backup server reveals an update without waiting to ensure it has been
committed, then it may reveal an uncommitted write. If the primary then fails, the backup
whose database is used to recover may not have recent uncommitted writes. So the write
may disappear, and other clients issuing strictly subsequent reads may not see that write.
That would not be linearizable.

Name:

6.5840 Spring 2024, Exam 1 Page 18 of 21

IX Distributed Transactions

MouseGPT is designing a distributed transaction system using two-phase commit and two-phase
locking, as discussed in Lecture 12 and Chapter 9 of the 6.033 reading. The goal is to provide seri-
alizable results. The question arises of what should happen if a participant computer crashes while
in the PREPARED state for a transaction. MouseGPT thinks that all-or-nothing atomicity would
be satisfied if such a transaction were completely forgotten. So MouseGPT designs the system so
that if a participant computer crashes and restarts while it is in the PREPARED state for a trans-
action that it’s part of, the recovery software on that computer un-does any local modifications the
interrupted transaction might have performed and releases its locks, and sends a network message
to each other participant and to the TC to tell them to undo any changes made by the transaction
and to release its locks.

15. [6 points]: Explain why MouseGPT’s plan would cause the system to produce non-
serializable (incorrect) results.

Answer: The TC may have decided to commit the transaction, and sent out COMMIT
messages to the other participating workers, and they may have committed, and revealed
committed results to other transactions. At that point, there is no way to back out of the
transaction without violating serializability and atomicity.

Name:

6.5840 Spring 2024, Exam 1 Page 19 of 21

X 6.5840

16. [1 points]: Which lectures/papers should we definitely keep for future years?

– MapReduce

– RPC, Threads, and Go

– Linearizability

– GFS

– Raft

– ZooKeeper

– Q+A on Lab 3A/3B

– Grove

– Transactions

Answer:

Lecture Count
MapReduce 76
RPC, Threads, and Go 50
Linearizability 64
GFS 60
Raft 93
ZooKeeper 55
Q+A on Lab 3A/3B 27
Grove 22
Transactions 48

Name:

6.5840 Spring 2024, Exam 1 Page 20 of 21

17. [1 points]: Which lectures/papers should we omit?

– MapReduce

– RPC, Threads, and Go

– Linearizability

– GFS

– Raft

– ZooKeeper

– Q+A on Lab 3A/3B

– Grove

– Transactions

Answer:

Lecture Count
MapReduce 5
RPC, Threads, and Go 13
Linearizability 10
GFS 7
Raft 0
ZooKeeper 9
Q+A on Lab 3A/3B 33
Grove 51
Transactions 7

Name:

6.5840 Spring 2024, Exam 1 Page 21 of 21

18. [1 points]: What can we do to improve the course?

Answer:

General feedback Count
Fine 8
More OH 7
Overview/motivation of all covered papers/systems 6
More visual diagrams 4
More on real-world and modern systems 4
Publish lecture question answers 4
More exercises on papers 3
More distributed systems theory 2
Raft lecture too close to 2A deadline 2
More responsive on Piazza 1
More lecture questions 1
More collaboration 1
Extra credit for project 1
More implementation details on papers 1
More support for Harvard students 1
Discuss other concurrency features (e.g. async/await) 1
Linearizability lecture earlier 1
Curate FAQs 1
Make pre-lecture quesitons optional 1

Lab-related feedback Count
Better debugging for labs 16
Less lab dependency 8
More lab QA/recitation 7
Stronger tests for labs 6
More tutorials/FAQ on Go 3
Clearer instruction on labs 2
Better windows support 2
Weight labs more in grading 2
Spread labs out across papers (instead of all being raft-based) 2
More specific lab difficulty labels 1
Post all labs at the start 1

End of Exam I

Name:

