
GROUP COMMUNICATION IN AMOEBA
AND ITS APPLICATIONS

M. Frans Kaashoek†
Andrew S. Tanenbaum

Kees Verstoep

Dept. of Math. and Comp. Sci.
Vrije Universiteit

Amsterdam, The Netherlands

Email: kaashoek@lcs.mit.edu, ast@cs.vu.nl, and versto@cs.vu.nl.

ABSTRACT

Unlike many other operating systems, Amoeba is a distributed operating
system that provides group communication (i.e., one-to-many communication).
We will discuss design issues for group communication, Amoeba’s group sys-
tem calls, and the protocols to implement group communication. To demon-
strate that group communication is a useful abstraction, we will describe a
design and implementation of a fault-tolerant directory service. We discuss two
versions of the directory service: one with Non-Volatile RAM (NVRAM) and
one without NVRAM. We will give performance figures for both implementa-
tions.

1. Introduction

Most current distributed operating systems provide only Remote Procedure Call (RPC) [6]. The
idea is to hide the message passing, and make the communication look like an ordinary pro-
cedure call (see Figure 1). The sender, called the client , calls a stub routine on its own machine
that builds a message containing the name of the procedure to be called and all the parameters.
It then passes this message to the driver for transmission over the network. When it arrives, the
remote driver gives it to a stub, which unpacks the message and makes an ordinary procedure
call to the server . The reply from server to client follows the reverse path.

Client machine Server machine

Client Stub Driver Driver Stub ServerNetwork

Figure 1: Remote procedure call from a client to a server.

�����������������������������������

† Current affiliation: Lab for Computer Science, MIT, Cambridge MA.



- 2 -

Although RPC is a very useful communication paradigm, many applications need something
more. RPC is inherently point-to-point communication, but what often is needed is 1-to-n com-
munication. Consider, for example, a parallel application. Typically in a parallel application a
number of processes cooperate to compute a single result. If one of the processes finds a partial
result (e.g., a better bound in a parallel branch-and-bound program) it is often necessary that this
partial result is communicated immediately to the other processes, so that they do not waste
cycles on computing something that is not interesting anymore, given the new partial result.
What is needed here is a way to send a message from 1 process to n processes. This abstraction
is called group communication.

Now consider a second application: a fault-tolerant storage service. A reliable storage service
can be built by replicating data on multiple processors each with its own disk. If a piece of data
needs to be changed, the service either has to send the new data to all processes or invalidate all
other copies of the changed data. If only point-to-point communication were available, then the
process would have to send n − 1 reliable point-to-point messages. In most systems this will cost
at least 2(n − 1) messages (one packet for the actual message and one packet for the ack-
nowledgement). If the message sent by the server has to be fragmented into multiple network
packets, then the cost will be even higher. This method is slow, inefficient, and wasteful of net-
work bandwidth.

In addition to being expensive, building distributed applications using only point-to-point com-
munication is often difficult. If, for example, two servers in the reliable storage service receive a
request to update the same data, they need a way to order the updates, otherwise the data may
become inconsistent. The problem is illustrated in Figure 2. The copies of variable x become
inconsistent because the messages from Server 1 and Server 2 are not ordered. The problem of
ordering is not restricted to point-to-point communication, however.

Many network designers have realized that group communication is an important tool for build-
ing distributed applications; broadcast communication is provided by many networks, including
LANs, geosynchronous satellites, and cellular radio systems [33]. Several commonly used
LANs, such as Ethernet and some rings, even provide multicast communication. Using multi-
cast communication, messages can be sent exactly to the group of processes that are interested in
receiving them. Future networks, like Gigabit LANs, are also likely to implement broadcasting
and/or multicasting to support high-performance applications such as multimedia [22].

The protocol presented in this paper for group communication uses the hardware multicast capa-
bility of a network, if one exists. Otherwise, it uses broadcast messages or point-to-point mes-
sages, depending on the size of the group and the availability of broadcast communication.
Thus, Amoeba makes the hardware support for group communication available to application
programs.

The outline of the rest of the paper is as follows. In Section 2, we will discuss design issues in
group communication. In Section 3, we will discuss the Amoeba group system calls. Section 4
gives an overview of the protocols that are used to implement group communication in Amoeba.
In Section 5, we will describe the design and implementation of a distributed application using
group communication: a fault-tolerant directory service. In Section 6, we will give performance
figures for two implementations of the directory service. In Section 7, some conclusions will be
drawn.



- 3 -

1 1

Server1 Server2

X = 2 X = 3
X X

2 3

Server1 Server2

X = 2

X = 3

X X

3 2

Server1 Server2

Done Done
X X

Figure 2: Inconsistency due to lack of message ordering.

2. Design Issues in Group Communication

Few existing operating systems provide application programs with support for group communi-
cation. To understand the differences between these existing systems, six design criteria are of
interest: addressing, reliability, ordering, delivery semantics, response semantics, and group
structure (see Table 1). We will discuss each one in turn.

�������������������������������������������������������������������������������������������������������������������������������������������
Issue Description��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
Addressing Addressing method for a group (e.g., list of members)�������������������������������������������������������������������������������������������������������������������������������������������
Reliability Reliable or unreliable communication�������������������������������������������������������������������������������������������������������������������������������������������
Ordering Order among messages (e.g., total ordering)�������������������������������������������������������������������������������������������������������������������������������������������
Delivery semantics How many processes must receive the message successfully�������������������������������������������������������������������������������������������������������������������������������������������
Response semantics How to respond to a broadcast message�������������������������������������������������������������������������������������������������������������������������������������������
Group structure Semantics of a group (e.g., dynamic versus static)�������������������������������������������������������������������������������������������������������������������������������������������

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

Table 1: The main design issues for group communication.

Four methods of addressing messages to a group exist. The simplest one is to require the sender
to explicitly specify all the destinations to which the message should be delivered. A second
method is to use a single address for the whole group. This method saves bandwidth and also
allows a process to send a message without knowing which processes are members of the group.
Two less common addressing methods are source addressing [13], and functional



- 4 -

addressing [16]. Using source addressing, a process accepts a message if the source is a
member of the group. Using functional addressing, a process accepts a message if a user-
defined function on the message evaluates to true. The disadvantage of the latter two methods is
that they are hard to implement with current network interfaces.

The second design criterion, reliability, deals with recovery from communication failures, such
as buffer overflows and garbled packets. Because reliability is more difficult to implement for
group communication than for point-to-point communication, a number of existing operating
systems provide unreliable group communication, whereas almost all operating systems provide
reliable point-to-point communication, for example, in the form of RPC.

Another important design decision in group communication is the ordering of messages sent to a
group. Roughly speaking, there are 4 possible orderings: no ordering, FIFO ordering, causal
ordering, and total ordering [5]. No ordering is easy to understand and implement, but unfor-
tunately makes programming often harder. FIFO ordering guarantees that all messages from a
member are delivered in the order in which they were sent. Causal ordering guarantees that all
messages that are related are ordered. More specifically: messages are in FIFO order and if a
member after receiving message A sends a message B, it is guaranteed that all members will
receive A before B. In the total ordering, each member receives all messages in the same order.
The last ordering is stronger than any of the other orderings and makes programming easier, but
it is harder to implement.

To illustrate the difference between FIFO and total ordering, consider a service that stores
records for client processes. Assume that the service replicates the records on each server to
increase availability and reliability and that it guarantees that all replicas are consistent. If a
client may only update its own records, then it is sufficient that all messages from the same
client will be ordered. Thus, in this case FIFO ordering can be used. If a client may update any
of the records, then FIFO ordering is not sufficient. A total ordering on the updates, however, is
sufficient to ensure consistency among the replicas. To see this, assume that two clients, C 1 and
C 2 , send an update for record X at the same time. As these two updates will be totally-ordered,
all servers either (1) receive first the update from C 1 and then the update from C 2 or (2) receive
first the update from C 2 and then the update from C 1 . In either case, the replicas will stay con-
sistent, because every server applies the updates in the same order. If in this case FIFO (or
causal) ordering had been used, it might have happened that the servers applied the updates in
different orders, resulting in inconsistent replicas.

The fourth item in the table, delivery semantics relates to when a message is considered
delivered successfully to a group. There are 3 choices: k-delivery, quorum delivery, and atomic
delivery. With k-delivery, a broadcast is successful when k processes have received the message
for some constant k. With quorum delivery, a broadcast is defined as being successful when a
majority of the current membership has received it. With atomic delivery either all processes
receive it or none do. For many applications atomic delivery is the ideal semantics, but is harder
to implement if processors can fail.

Item five, response semantics deals with what the sending process expects from the receiving
processes [17]. There are four broad categories of what the sender can expect: no responses, a
single response, many responses, and all responses. Operating systems that integrate group com-
munication and RPC completely support all four choices [9].

The last design decision specific to group communication is group structure. Groups can be
either closed or open [23]. In a closed group, only members can send messages to the group. In
an open group, nonmembers may also send messages to the group. In addition, groups can be
static or dynamic. In static groups processes cannot leave or join a group, but remain a member
of the group for the lifetime of the process. Dynamic groups may have a varying number of



- 5 -

members over time. If processes can be members of multiple groups, the semantics for overlap-
ping groups must be defined. Suppose that two processes are members of both groups G 1 and
G 2 and that each group guarantees a total ordering. A design decision has to be made about the
ordering between the messages of G 1 and G 2 . All choices discussed in this section (none,
FIFO, causal, and total ordering) are possible.

To make these design decisions more concrete, we briefly discuss two systems that support
group communication. Both systems support open dynamic groups, but differ in their semantics
for reliability and ordering. In the V system [9], groups are identified with a group identifier. If
two processes concurrently broadcast two messages, A and B, respectively, some of the members
may receive A first and others may receive B first. No guarantees about ordering are given.
Group communication in the V system is unreliable. Users can, however, build their own group
communication primitives with the basic primitives. They could, for example, implement a pro-
tocol with reliable communication and total ordering as a library package.

In the Isis system [4], messages are sent to a group identifier or to a list of addresses. When
sending a message, a user specifies how many replies are expected. Messages can be totally-
ordered, even for groups that overlap. Reliability in Isis means that either all or no members of
a group will receive a message, even in the face of processor failures. Because these semantics
are hard to implement efficiently, Isis also provides primitives that give weaker semantics, but
better performance. It is up to the programmer to decide which primitive is required.

Recently the protocols for Isis have been redesigned [5]. The system is now completely based
on a broadcast primitive that provides causal ordering. The implementation of this primitive
uses reliable point-to-point communication. The protocol for totally-ordered broadcast is based
on causal broadcast. The new version of Isis no longer supports a total ordering for overlapping
groups.

3. Group Communication in Amoeba

Amoeba is a distributed operating system based on the client/server model [34, 27]. Services in
Amoeba are addressed by ports, which are large random numbers. When a service is started, it
generates a new port and registers the port with the directory service. A client can look up the
port using the directory service and ask its own kernel to send a message to the given port. The
kernel will map the port on a network address. If multiple servers listen to the same port, only
one (arbitrary) server will get the message.

Ports are also used to identify groups. RPC and group primitives that are called with the same
port do not interfere with each other. When creating a group, the user specifies a port. Other
processes can use this port, for example, to join the group or to send a message to the group.
Thus, in Amoeba all entities, processes and groups, are addressed in a uniform way.

Groups in Amoeba are closed. A process that is not a member and that wishes to communicate
with a group can use RPC (or it can join the group). The reason for doing so is that a client need
not be aware whether a service consists of multiple servers which perhaps broadcast messages to
communicate with one another, or a single server. Also, a service should not have to know
whether the client consists of a single process or a group of processes. This design decision is in
the spirit of the client-server paradigm: a client knows what operations are allowed, but should
not know how these operations are implemented by the service.

The primitives to manage groups and to communicate within a group are given in Table 2. We
will discuss the most important one: SendToGroup. This primitive guarantees that hdr and buf
will be delivered to all members, even in the face of unreliable communication and finite
buffers. Furthermore, when the resilience degree of the group is r (as specified in



- 6 -

� �������������������������������������������������������������������������������������������������������������������������������������������������������
Function(parameters) → result Description� �������������������������������������������������������������������������������������������������������������������������������������������������������� �������������������������������������������������������������������������������������������������������������������������������������������������������
CreateGroup(port, resilience, max_group,

nr_buf, max_msg) → gd
Create a group. A process speci-
fies how many member failures
must be tolerated without loss of
any message.� �������������������������������������������������������������������������������������������������������������������������������������������������������

JoinGroup(hdr) → gd Join a specified group.� �������������������������������������������������������������������������������������������������������������������������������������������������������
LeaveGroup(gd, hdr) Leave a group. The last member

leaving causes the group to vanish.� �������������������������������������������������������������������������������������������������������������������������������������������������������
SendToGroup(gd, hdr, buf, bufsize) Atomically send a message to all

the members of the group. All
messages are totally-ordered.� �������������������������������������������������������������������������������������������������������������������������������������������������������

ReceiveFromGroup(gd, &hdr, &buf, bufsize, &more)
→ size

Block until a message arrives.
More tells if the system has buf-
fered any other messages.� �������������������������������������������������������������������������������������������������������������������������������������������������������

ResetGroup(gd, hdr, nr_members) → group_size Recover from processor failure. If
the newly reset group has at least
nr_member members, it succeeds.� �������������������������������������������������������������������������������������������������������������������������������������������������������

GetInfoGroup(gd, &state) Return state information about the
group, such as the number of
group members and the caller’s
member id.� �������������������������������������������������������������������������������������������������������������������������������������������������������

ForwardRequest(gd, member_id) Forward a request for the group to
another group member.� �������������������������������������������������������������������������������������������������������������������������������������������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 2: Primitives to manage a group and to communicate within a group.

CreateGroup), the protocol guarantees that even in the event of a simultaneous crash of up to r
members, it will either deliver the message to all remaining members or to none. Choosing a
large value for r provides a high degree of fault tolerance, but extracts a penalty in performance.
The tradeoff chosen is up to the user.

In addition to reliability, the protocol guarantees that messages are delivered in the same order to
all members. Thus, if two members (on two different machines), simultaneously broadcast two
messages, A and B, the protocol guarantees that either

(1) All members receive A first and then B, or

(2) All members receive B first and then A.

Random mixtures, where some members get A first and others get B first, are guaranteed not to
occur. Application programs can count on it.

Table 3 lists the design issues and the choices for Amoeba. To summarize, the group primitives
provide an abstraction that enables programmers to design applications consisting of multiple
processes running (typically) on different machines. It is a simple, but powerful, abstraction.
All members of a group see all events in the same order. Even the events of a new member join-
ing the group, a member leaving the group, and recovery from a crashed member are totally-
ordered. If, for example, one process calls JoinGroup and a member calls SendToGroup, either
all members first receive the join and then the broadcast or all members first receive the broad-
cast and then the join. In the first case the process that called JoinGroup will also receive the
broadcast message. In the second case, it will not receive the broadcast message. A mixture of



- 7 -

these two orderings is guaranteed not to happen. This property makes reasoning about a distri-
buted application much easier. Furthermore, the group interface gives support for building fault
tolerant applications by choosing an appropriate resilience degree.

� �����������������������������������������������������������������������������������
Issue Choice� ������������������������������������������������������������������������������������ �����������������������������������������������������������������������������������
Addressing Group identifier (port)� �����������������������������������������������������������������������������������

Reliable communication;
Reliability

fault tolerance if specified� �����������������������������������������������������������������������������������
Ordering Total ordering per group� �����������������������������������������������������������������������������������
Delivery semantics All or none� �����������������������������������������������������������������������������������
Response semantics None (RPC is available)� �����������������������������������������������������������������������������������
Group structure Closed and dynamic� �����������������������������������������������������������������������������������

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

Table 3: Important design issues of Table 1 and the choices made for Amoeba.

4. Implementation of Group Communication

In this section we will describe the Amoeba group communication protocol. Many other proto-
cols exist which implement similar semantics [5, 8, 12, 28, 1]. A detailed comparison between
these, our and other protocols with respect to ordering semantics, fault-tolerance and perfor-
mance can be found in [18].

The protocol to be described runs inside the kernel and is accessible through the primitives
described in the previous section. It assumes that unreliable message passing between processes
is possible; fragmentation, reassembly, and routing of messages are done at lower layers in the
kernel [21]. The protocol performs best on a network that supports hardware multicast. Lower
layers, however, treat multicast as an optimization of sending point-to-point messages; if multi-
cast is not available, then point-to-point communication will be used. Even if only point-to-
point communication is available, the protocol is in most cases still more efficient than perform-
ing n RPCs. (In a mesh interconnection network, for example, the routing protocol will ensure
that the delay of sending n messages is only in the order of log2 n.)

Each kernel running a group member maintains information about the group (or groups) to
which the member belongs. It stores, for example, the size of the group and information about
the other members in the group. Any group member can, at any instant, decide to broadcast a
message to its group. It is the job of the kernel and the protocol to achieve reliable broadcasting,
even in the face of unreliable communication, lost packets, finite buffers, and node failures. We
assume, however, that Byzantine failures (in which a kernel sends malicious or contradictory
messages) do not occur.

Without loss of generality, we assume for the remainder of this section that the system contains
one group, with each member running on a separate processor. All machines run exactly the
same kernel and application software. However, when the application starts up, the machine on
which the group is created is made the sequencer. If the sequencer machine subsequently
crashes, the remaining members elect a new one. The sequencer machine is in no way
special—it has the same hardware and runs the same kernel as all the other machines. The only
difference is that it is currently performing the sequencer function.



- 8 -

Basic protocol

A brief description of the protocol is as follows (a complete description is given in [18] ). When
a group member calls SendToGroup to send a message, M, it hands the message to its kernel and
is blocked. The kernel encapsulates M in an ordinary point-to-point message and sends it to the
sequencer. When the sequencer receives M , it allocates the next sequence number, s , and broad-
casts a message containing M and s . Thus all broadcasts are issued from the same node, the
sequencer. Assuming that no messages are lost, it is easy to see that if two members con-
currently want to broadcast, one of them will reach the sequencer first and its message will be
broadcast first. Only when that broadcast has been completed will the other broadcast be
started. Thus, the sequencer provides a total time ordering. In this way, we can easily guarantee
the indivisibility of broadcasting per group.

When the kernel that sent M , receives the message from the network, it knows that its broadcast
has been successful. It unblocks the member that called SendToGroup .

Although most modern networks are highly reliable, they are not perfect, so the protocol must
deal with errors. Suppose some node misses a broadcast packet, either due to a communication
failure or lack of buffer space when the packet arrived. When the following broadcast message
eventually arrives, the kernel will immediately notice a gap in the sequence numbers. If it was
expecting s next, and it receives s + 1 instead, it knows it has missed one.

The kernel then sends a special point-to-point message to the sequencer asking it for a copy of
the missing message (or messages, if several have been missed). To be able to reply to such
requests, the sequencer stores broadcast messages in the history buffer . The sequencer sends the
missing messages to the process requesting them as point-to-point messages. The other kernels
also keep a history buffer, to be able to recover from sequencer failures and to buffer messages
when there is no outstanding ReceiveFromGroup call.

As a practical matter, a kernel has only a finite amount of space in its history buffer, so it cannot
store broadcast messages indefinitely. However, if it could somehow discover that all members
have received broadcasts up to and including m , it could then purge the broadcast messages up
to m from the history buffer.

The protocol has several ways of letting a kernel discover this information. For one thing, each
point-to-point message to the sequencer (e.g., a broadcast request), contains, in a header field,
the sequence number of the last broadcast received by the sender of the message (i.e., a pig-
gybacked acknowledgement). This information is also included in the message from the
sequencer to the other kernels. In this way, a kernel can maintain a table, indexed by member
number, showing that member i has received all broadcast messages up to Ti (and perhaps
more). At any instant, a kernel can compute the lowest value in this table, and safely discard all
broadcast messages up to and including that value. For example, if the values of this table are 8,
7, 9, 8, 6, and 8, the kernel knows that everyone has received broadcasts 0 through 6, so they can
safely be deleted from the history buffer. If a node does not do any broadcasting for a while, the
sequencer will not have an up-to-date idea of which broadcasts it has received. To provide this
information, nodes that have been quiet for a certain interval send the sequencer a special packet
acknowledging all received broadcasts. The sequencer can also request this information when it
runs out of space in its history buffer.

PB method and BB method

There is a subtle design point in the protocol; there are actually two ways to do a broadcast. In
the method we have just described, the sender sends a point-to-point message to the sequencer,
which then broadcasts it. We call this the PB method (Point-to-point followed by a Broadcast).



- 9 -

In the BB method, the sender broadcasts the message. When the sequencer sees the broadcast, it
broadcasts a special accept message containing the newly assigned sequence number. A broad-
cast message is only ‘‘official’’ when the accept message has been sent.

These methods are logically equivalent, but they have different performance characteristics. In
the PB method, each message appears on the network twice: once to the sequencer and once
from the sequencer. Thus a message of length n bytes consumes 2n bytes of network bandwidth.
However, only the second message is broadcast, so each user machine is interrupted only once
(for the second message).

In the BB method, the full message appears only once on the network, plus a very short accept
message from the sequencer. Thus, only about n bytes of bandwidth are consumed. On the
other hand, every machine is interrupted twice, once for the message and once for the accept.
Thus the PB method wastes bandwidth to reduce the number of interrupts and the BB method
minimizes bandwidth usage at the cost of more interrupts. The protocol switches dynamically
between the PB method and BB method depending on the message size.

Processor failures

The protocol described so far recovers from communication failures, but does not guarantee that
all surviving members receive all messages that have been sent before a member crashed. For
example, suppose a process sends a message to the sequencer, which broadcasts it. The sender
receives the broadcast and delivers it to the application, which interacts with the external world.
Now assume all other processes miss the broadcast, and the sender and sequencer both crash.
Now, the effects of the message are visible but none of the other members will receive it. This
is a dangerous situation that can lead to all kinds of disasters, because the ‘‘all-or-none’’ seman-
tics have been violated.

To avoid this situation, CreateGroup has a parameter r, the resilience degree that specifies the
resiliency. This means that the SendToGroup primitive does not return control to the application
until the kernel knows that at least r other kernels have received the message. To achieve this, a
kernel sends the message to the sequencer point-to-point (PB method) or broadcasts the message
to the group (BB method). The sequencer allocates the next sequence number, but does not offi-
cially accept the message yet. Instead, it buffers the message and broadcasts the message and
sequence number as a request for broadcasting to the group. On receiving such a request with a
sequence number, kernels buffer the message in their history and the r lowest-numbered send
acknowledgement messages to the sequencer. After receiving these acknowledgements, the
sequencer broadcasts the accept message. Only after receiving the accept message can members
other than the sequencer deliver the message to the application. That way, no matter which r
machines crash, there will be at least one left containing the full history, so everyone else can be
brought up-to-date during the recovery. Thus, an increase in fault tolerance is paid for by a
decrease in performance. The tradeoff chosen is up to the user.

5. An Application of Group Communication: a Fault-tolerant Directory Service

The group communication primitives have been used in parallel applications [3, 35], and in a
fault-tolerant implementation of the Orca programming language [19]. In this section, we dis-
cuss a fault-tolerant design and implementation of Amoeba’s directory service. The directory
service exemplifies distributed services that provide high reliability and availability by replicat-
ing data. For example, Amoeba’s Bullet file service [29], is currently also being made fault-
tolerant using active replication and group communication.

The directory service is a vital service in the Amoeba distributed operating system [30]. It pro-
vides among other things a mapping from ASCII names to capabilities. In its simplest form a



- 10 -

directory is basically a table with 2 columns: one storing the ASCII string and one storing the
corresponding capability. Capabilities in Amoeba identify an object (e.g., a file). The set of
capabilities a user possesses determines which objects it can access and which not. The direc-
tory service allows the users to store these capabilities under ASCII names to make life easier
for them.

The previous design and implementation of the directory service is based on RPC [30]. The
RPC directory service is duplicated and recovers therefore only from one processor failure.
Furthermore, it cannot tolerate network partitions. We will now discuss the design and imple-
mentation of a directory service based on group communication. A comparison of the two direc-
tory services can be found in [20].

The group directory service is triplicated (though four or more replicas are also possible, without
changing the protocol) and uses active replication. Also, it allows network partitions. To keep
the copies consistent, it uses a modified version of read-one write-all policy, called accessible
copies [11]. Recovery is based on the protocol described by Skeen [32]. The main purpose of
this section is to describe a fault-tolerant service based on group communication. Other projects
have implemented similar services [25, 31, 15, 26, 7, 24, 2].

The organization of the group directory service is depicted in Figure 3. The directory service is
currently built out of three directory servers, each using its own Bullet file server and disk
server. A Bullet server and a disk server share one disk. Each directory server stores a copy of
all directories.

Disk 1

Bullet

1

Dir

1

(a)

(b)

(c)

Disk 2

Bullet

2

Dir

2

(a)

(b)

(c)

Disk 3

Bullet

3

Dir

3

(a)

(b)

(c)

Directory service group

Figure 3: Organization of the service (a) Administrative data; (b) Directories; (c) Files.

The directory servers form a group with a resilience degree, r, of 2. This means that if SendTo-
Group returns successfully, it is guaranteed, even if two processors fail, that the message still
will be delivered to the third one. Furthermore, it is guaranteed even in the presence of com-
munication and processor failures that each server will receive all messages in the same order.



- 11 -

The strong semantics of SendToGroup make the implementation of the group directory service
simple.

The service stores the administrative data on a raw disk partition of n fixed-length blocks. Block
0 contains information needed during recovery (see below). Blocks 1 to n − 1 contain a table of
capabilities, indexed by object number. The capability in the object table points to a Bullet file
that stores the directory, random number for access protection, and the sequence number of the
last change. We assume that a block of the object table can be updated atomically. Bullet files
are never modified (they are immutable).

Default operation

Each server in the directory service consists of several threads: multiple server threads and one
group thread. The server threads are waiting for requests from a clients. The group thread is
waiting for an internal message sent to the group. There can be multiple server threads, but
there is only one group thread. A server thread that receives a request and initiates a directory
operation is called the initiator.

The initiator first checks if the current group has a majority (i.e., at least two of the three servers
must be up). If not, the request is refused; otherwise the request is processed. The reason why
even a read request requires a majority is because the network might become partitioned. Con-
sider the following situation. Two servers and a client are on one side of the network partition
and the client deletes the directory foo. This update will be performed, because the two servers
have a majority. Now assume that the two servers crash and that the network partition is
repaired. If the client asks the remaining server to list the directory foo, it would get the contents
of a directory that it had successfully deleted earlier. Therefore, read requests are refused if the
group of servers does not have a majority. (There is an escape for system administrators in case
two servers lose their data forever due to, for example, a head crash.)

Read operations can be handled by any server without the need for communication between the
servers. When a read request is received, the initiator checks if the kernel has any messages buf-
fered using GetInfoGroup. If so, it blocks to give the group thread a chance to process the buf-
fered messages; before performing a read operation, the initiator has to be sure that it has per-
formed all preceding write operations. If a client, for example, deletes a directory and then tries
to read it back, it has to receive an error, even if the client requests were processed at different
directory servers. As messages are sent using r = 2, it is sufficient to see if there are any mes-
sages buffered on arrival of the read request. Once these buffered messages are processed, the
initiator can perform the read request.

Write operations require communication among the servers. First, the initiator generates a new
capability, because all the servers must use the same capability when creating a new directory.
Otherwise, some servers may consider a directory capability valid, while others do not. The ini-
tiator broadcasts the request to the group using the primitive SendToGroup and blocks until the
group thread received and executed the request. Once it is unblocked, it sends the result of the
request back to the client.

The group thread is continuously waiting for a message sent to the group (i.e., it is blocked in
ReceiveFromGroup). If ReceiveFromGroup returns, the group thread first checks if the call to
ReceiveFromGroup returned successfully. If not, one of the servers must have crashed. In this
case, it rebuilds the group by calling ResetGroup, updates its commit block, and calls
ReceiveFromGroup again. If it does not succeed in building a group with a majority of the
members of the original group, the server enters recovery mode.

If ReceiveFromGroup returns successfully, the server creates the new directory on its Bullet



- 12 -

server, updates its cache, updates its object table, and writes the changed entry in the object table
to its disk. As soon as one server writes the new entry to disk, the operation is committed. If no
server fails, each server will receive all requests and service all requests in the same order and
therefore all the copies of the directories stay consistent. There might be a small delay, but
eventually each server will receive all messages.

When the client’s RPC returns successfully, the user knows that one new copy of the directory is
stored on disk and that at least two other servers have received the request and stored the new
directory on disk, too, or will do so shortly. If one server fails, the client can still access its
directories.

Let us analyze the cost of a directory operation in terms of communication cost and disk opera-
tions. Read operations do not involve communication or disk operations (if the requested direc-
tory is in the cache). Write operations require one group message sent with r = 2, a Bullet
operation to store the new directory, and one disk operation to store the changed entry in the
object table.

Recovery protocol

Block 0, the commit block, contains information that is needed during recovery and is shown in
Figure 4. It contains the configuration vector. The configuration vector is a bit vector, indexed
by server number. If server 2, for example, is down, bit 2 in the vector is set to 0.

1 up? 2 up? 3 up? Sequence number Recovering?

Figure 4: Layout of the commit block.

During recovery, the sequence number is computed by taking the maximum of all the sequence
numbers stored with the directory files and the sequence number stored in the commit block. At
first sight it may seem strange that a sequence number is also stored in the commit block, but
this is needed for the following case. When a directory is deleted, the Bullet file containing the
sequence number is deleted, but the server must store somewhere that it performed an update.
The sequence number in the commit block is used for this case. It is only updated when a direc-
tory is deleted.

The recovering field is needed to keep track if a server crashed during recovery. If this field is
set, the server knows that it crashed during recovery. In this case, it sets the sequence number to
zero, because its state is inconsistent. It may have recent versions of some directories and old
versions of other directories. The sequence number is set to zero to ensure that other servers will
not try to update their directories from a server whose state is inconsistent.

A server starts executing the recovery protocol when it is a member of a group that forms a
minority or when it comes up after having been down. Two conditions have to be met to
recover:

1. The new group must have a majority to avoid inconsistencies during network parti-
tions;

2. The new group must contain the set of servers that possibly performed the latest
update.

It is the latter requirement that makes recovery of the group service complicated. During



- 13 -

recovery the servers need an algorithm to determine which servers failed last.

Such an algorithm exists; it is due to Skeen [32] and it works as follows. Each server keeps a
mourned set of servers that crashed before it. When a server starts recovering, it sets the new
group to only itself. Then, it exchanges with all other alive servers its mourned set. Each time it
receives a new mourned set, it adds the servers in the received mourned set to its own mourned
set. Furthermore, it puts the server with whom it exchanged the mourned set in the new group.
The algorithm terminates when all servers minus the mourned set are a subset of the new group.

The complete recovery protocol is as follows. When a server enters recovery mode, it first tries
to join the group. If this fails, it assumes that the group is not created yet and it creates the
group. If after a certain waiting period, an insufficient number of members joined the group, it
leaves the group and starts all over again. It may have happened that two servers recreated the
group (e.g., two servers on each side of the network partition) and that they both cannot acquire
a majority of the members. To avoid simultaneous group rebuilds happening forever, each
server has a different waiting periode before it will retry. Furthermore, in case one of the
members cannot start up at all (e.g., because of a disk head crash) an escape mechanism is avail-
able, allowing the remaining members to form a new group.

Once a server has created or joined a group that contains a majority of all directory servers, it
executes Skeen’s algorithm to determine the set of servers that crashed last, the last set. If this
set is not a subset of the new group, the server has to wait for servers from the last set to join the
group. If the last set is a subset of the new group, the new group has the most recent version of
the directories. The server determines who in the group has them and gets them. Once it is up-
to-date, it writes the new configuration to disk and enters normal operation.

This recovery protocol can still be improved. Skeen’s algorithm assumes that network partitions
do not occur. To make his algorithm work for our assumption, we forced the servers that have a
minority to fail. Now the recovery protocol will fail in certain cases in which it is actually possi-
ble to recover. Consider the following sequence of events. Server 1, 2, and 3 are up; server 3
crashes; server 1 and 2 form a new group; server 2 crashes. Now as we want to tolerate network
partitions correctly, we forced server 1 to fail. However, this is too strict. If server 1 stays alive
and server 3 is restarted, server 1 and 3 can form a new group, because server 1 must have per-
formed all the updates that server 2 could have performed. The rule in general is that two
servers can recover, if the server that did not fail has a higher sequence number, as in this case it
is certain that the new member has not formed a group with the (now) unavailable member in the
meantime. We will incorporate this improvement in our directory service in the near future.

6. Performance of the Directory Service

The directory service has been used in an experimental environment for several months. It runs
on machines comparable to a Sun3/60 connected by 10 Mbit/s Ethernet. The Bullet servers run
on Sun3/60s and are equipped with Wren IV SCSI disks. In the experiments we were using a
group of three replicated members (with r = 2).

We have measured the performance of three kinds of operations. The results are shown in Table
4. The first experiment measures the time to append a new (name, capability) pair to a directory
and delete it subsequently (e.g., appending and deleting a name for a temporary file). The second
experiment measures the time to create a 4-byte file, register its capability with the directory ser-
vice, look up the name, read the file back from the file service, and delete the name from the
directory service. This corresponds with the use of a temporary file that is the output of the first
phase of a compiler and then is used as an input file for the second phase. Thus, the first experi-
ment measures only the directory service, while the second experiment measures both the direc-
tory and file service. The third experiment measures the performance of the directory server for



- 14 -

read operations.

� �������������������������������������������������������������������������������������
Group Sun Group

Operation
(r = 2) NFS +NVRAM� �������������������������������������������������������������������������������������� �������������������������������������������������������������������������������������

Append-delete 184 87 27� �������������������������������������������������������������������������������������
Tmp file 215 111 52� �������������������������������������������������������������������������������������
Directory lookup 5 6 5� �������������������������������������������������������������������������������������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Table 4: Performance of 3 kinds of directory operations (times in msec).

For comparison reasons, we ran the same experiments using Sun NFS; the results are listed in
the second column. The measurements were run on SunOS4.1.1 and the file used was located in
/usr/tmp/. NFS does not provide any fault tolerance or consistency (e.g., if another client has
cached the directory, this copy will not be updated consistently when the original is changed).
Compared to NFS, providing high reliability and availability costs a factor of 2.1 in performance
for the ‘‘append-delete’’ test and 1.9 in performance for the ‘‘tmp file’’ test.

The dominant cost in providing a fault-tolerant directory service is the cost for doing the disk
operations. Therefore, we have implemented a third version of the directory service, which does
not perform any disk operations in the critical path. Instead of directly storing modified direc-
tories on disk, this implementation stores the modifications to a directory in a 24Kbyte Non
Volatile RAM (NVRAM). Note that this relatively small amount of NVRAM available makes it
more suited for use in a directory service than in a file service. An update to a directory gen-
erally requires less than 100 bytes of data to be modified. When the server is idle, it applies the
modifications logged in NVRAM to the directories stored on disk. Because NVRAM is a reli-
able medium, this implementation provides the same degree of fault tolerance as the other
implementations, while the performance is much better. A similar optimization has been used
in [10, 24, 14].

Using NVRAM, some sequences of directory operations do not require any disk operations at
all. Consider the use of /tmp. A file written in /tmp is often deleted shortly after it is used. If
the append operation is still logged in NVRAM when the delete is performed, then both the
append and the delete modifications to /tmp can be removed from NVRAM without executing
any disk operations at all.

We have implemented and measured a version of the directory service that uses NVRAM.
Using group communication and NVRAM, the performance improvements for the experiments
are enormous (see third column in Table 4). This implementation is 6.8 and 4.1 times more effi-
cient than the pure group implementation. The implementation based on NVRAM is even faster
than Sun NFS, which provides less fault tolerance and has a lower availability. We would need
to compare it to Sun NFS with NVRAM support to obtain a better comparison, however.

7. Conclusion

Six design issues are important in group communication: addressing, reliability, ordering,
delivery semantics, response semantics, and group structure. We have described the choices that
have been made for Amoeba. Amoeba groups are addressed by a port and provide reliable
totally-ordered communication. Furthermore, users can trade performance for fault tolerance.

To implement group communication, Amoeba uses a centralized negative acknowledgement
protocol. The total ordering is enforced by a centralized machine, called the sequencer. Instead



- 15 -

of acknowledging every messages, members of the group piggyback the sequence number for
the latest received messages on messages sent to the sequencer. The result is two simple and
efficient protocols: the PB and BB protocols. If no failures occur, both protocols need on aver-
age only slightly more than two messages per reliable totally-ordered group message.

To illustrate the usage of group communication, we discussed the design and implementation of
Amoeba’s directory service. To achieve high availability and high reliability, the directory ser-
vice replicates directories on three machines, each with its own disk. The replicas of a directory
are kept consistent using group communication. We described two implementations of the
directory service: one using NVRAM and one without NVRAM. NVRAM is used to avoid disk
operations in the critical path.

Acknowledgements

Henri Bal, Leendert van Doorn, Greg Sharp, and Mark Wood provided comments on drafts of
this paper, which improved its content and presentation substantially. We also want to thank the
referees for their useful suggestions.

References

1. Y. Amir, D. Dolev, S. Kramer, and D. Malki, ‘‘Transis: A Communication Sub-System for
High Availability,’’ Proc. 22nd International Symposium on Fault-Tolerant Computing,
Boston, MA, pp. 76-84 (June 1992).

2. M. Baker, S. Asami, E. Deprit, J. Ousterhout, and M. Seltzer, ‘‘Non-Volatile Memory for
Fast, Reliable File Systems,’’ Proc. Fifth Int. Conf. on Architectural Support for Program-
ming Language and Operating Systems, Boston, MA, pp. 10-22 (Oct. 1992).

3. H.E. Bal, Programming Distributed Systems, Silicon Press, Summit, NJ (1990).

4. K.P. Birman and T.A. Joseph, ‘‘Reliable Communication in the Presence of Failures,’’
ACM Trans. Comp. Syst. 5(1), pp. 47-76 (Feb. 1987).

5. K.P. Birman, A. Schiper, and P. Stephenson, ‘‘Lightweight Causal and Atomic Group
Multicast,’’ ACM Trans. Comp. Syst. 9(3), pp. 272-314 (Aug. 1991).

6. A.D. Birrell and B.J. Nelson, ‘‘Implementing Remote Procedure Calls,’’ ACM Trans.
Comp. Syst. 2(1), pp. 39-59 (Feb. 1984).

7. J.J. Bloch, D.S. Daniels, and A.Z. Spector, ‘‘A Weighted Voting Algorithm for Replicated
Directories,’’ Journal of the ACM 34(4), pp. 859-909 (Oct. 1987).

8. J. Chang and N.F. Maxemchuk, ‘‘Reliable Broadcast Protocols,’’ ACM Trans. Comp. Syst.
2(3), pp. 251-273 (August 1984).

9. D.R. Cheriton and W. Zwaenepoel, ‘‘Distributed Process Groups in the V kernel,’’ ACM
Trans. Comp. Syst. 3(2), pp. 77-107 (May 1985).

10. D.S. Daniels, A.Z. Spector, and D.S. Thompson, ‘‘Distributed Logging for Transaction
Processing,’’ Proc. ACM SIGMOD 1987 Annual Conference, San Francisco, CA, pp. 82-
96 (May 1987).

11. A. El Abbadi, D. Skeen, and F. Cristian, ‘‘An Efficient, Fault-Tolerant Algorithm for
Replicated Data Management,’’ Proc. Fifth Symposium on Principles of Database Sys-
tems, Portland, OR, pp. 215-229 (March 1985).

12. E.N. Elnozahy and W. Zwaenepoel, ‘‘Replicated Distributed Processes in Manetho,’’
Proc. 22nd International Symposium on Fault-Tolerant Computing, Boston, MA, pp. 18-27
(July 1992).



- 16 -

13. R. Gueth, J. Kriz, and S. Zueger, ‘‘Broadcasting Source-Addressed Messages,’’ Proc. Fifth
International Conference on Distributed Computing Systems, Denver, CO, pp. 108-115
(1985).

14. S. Hariri, A. Choudhary, and B. Sarikaya, ‘‘Architectural Support for Designing Fault-
Tolerant Open Distributed Systems,’’ IEEE Computer 25(6), pp. 50-61 (June 1992).

15. A. Hisgen, A.D. Birrell, C. Jerian, T. Mann, M. Schroeder, and C. Swart, ‘‘Granularity and
Semantic Level of Replication in the Echo Distributed File System,’’ IEEE TCOS
Newsletter 4(3), pp. 30-32 (1990).

16. L. Hughes, ‘‘A Multicast Interface for UNIX 4.3,’’ Software Practice and Experience
18(1), pp. 15-27 (Jan. 1988).

17. L. Hughes, ‘‘Multicast Response Handling Taxonomy,’’ Computer Communications 12(1),
pp. 39-46 (Feb. 1989).

18. M.F. Kaashoek, ‘‘Group Communication in Distributed Computer Systems,’’ Ph.D. thesis,
Vrije Universiteit, Amsterdam (Dec. 1992).

19. M.F. Kaashoek, R. Michiels, H.E. Bal, and A.S. Tanenbaum, ‘‘Transparent Fault-tolerance
in Parallel Orca Programs,’’ Proc. Symposium on Experiences with Distributed and Mul-
tiprocessor Systems III, Newport Beach, CA, pp. 297-312 (March 1992).

20. M.F. Kaashoek, A.S. Tanenbaum, and K. Verstoep, ‘‘An Experimental Comparison of
Remote Procedure Call and Group Communication,’’ Proc. Fifth ACM SIGOPS European
Workshop , Le Mont Saint-Michel, France (Sept. 1992).

21. M.F. Kaashoek, R. van Renesse, H. van Staveren, and A.S. Tanenbaum, ‘‘FLIP: an Inter-
network Protocol for Supporting Distributed Systems,’’ ACM Trans. Comp. Syst. (Feb.
1993).

22. H.T. Kung, ‘‘Gigabit Local Area Networks: a Systems Perspective,’’ IEEE Communica-
tions Magazine 30(4), pp. 79-89 (April 1992).

23. L. Liang, S.T. Chanson, and G.W. Neufeld, ‘‘Process Groups and Group Communication:
Classification and Requirements,’’ IEEE Computer 23(2) (Feb. 1990).

24. B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira, and M. Williams, ‘‘Replication
in the Harp File System,’’ Proc. Thirteenth Symposium on Operating System Principles,
Pacific Grove, CA, pp. 226-238 (Oct. 1991).

25. K. Marzullo and F. Schmuck, ‘‘Supplying High Availability with a Standard Network File
System,’’ Proc. Eighth International Conference on Distributed Computing Systems, San
Jose, CA, pp. 447-453 (June 1988).

26. S. Mishra, L.L. Peterson, and R.D. Schlichting, ‘‘Implementing Fault-Tolerant Replicated
Objects Using Psync,’’ Proc. Eighth Symposium on Reliable Distributed Systems, Seattle,
WA (Oct. 1989).

27. S.J. Mullender, G. van Rossum, A.S. Tanenbaum, R. van Renesse, and H. van Staveren,
‘‘Amoeba: A Distributed Operating System for the 1990s,’’ IEEE Computer 23(5), pp. 44-
53 (May 1990).

28. L.L. Peterson, N.C. Buchholtz, and R.D. Schlichting, ‘‘Preserving and Using Context
Information in IPC,’’ ACM Trans. Comp. Syst. 7(3), pp. 217-246 (Aug. 1989).

29. R. van Renesse, A. S. Tanenbaum, and A. Wilschut, ‘‘The Design of a High-Performance
File Server,’’ Proc. Ninth International Conference on Distributed Computing Systems,
Newport Beach, CA, pp. 22-27 (June 1989).

30. R. van Renesse, ‘‘The Functional Processing Model,’’ Ph.D. Thesis, Vrije Universiteit,



- 17 -

Amsterdam (1989).

31. M. Satyanarayanan, ‘‘Scalable, Secure, and Highly Available Distributed File Access,’’
IEEE Computer 23(5), pp. 9-22 (May 1990).

32. D. Skeen, ‘‘Determining the Last Process to Fail,’’ ACM Trans. Comp. Syst. 3(1), pp. 15-
30 (Feb. 1985).

33. A.S. Tanenbaum, Computer Networks 2nd ed., Prentice-Hall, Englewood Cliffs, NJ
(1989).

34. A.S. Tanenbaum, R. van Renesse, H. van Staveren, G. Sharp, S.J Mullender, A. Jansen,
and G. van Rossum, ‘‘Experiences with the Amoeba Distributed Operating System,’’ Com-
mun. ACM 33(12), pp. 46-63 (Dec. 1990).

35. A.S. Tanenbaum, M.F. Kaashoek, and H.E. Bal, ‘‘Parallel Programming Using Shared
Objects and Broadcasting,’’ IEEE Computer 25 (Aug. 1992).


