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Abstract

Anyone who uses more than one computer system is
awareof the data managementproblemposedby doing
so: sharingfiles amongsystemsrequirespropagationof
changesto the other systemsby some synchronization
method. The proliferation of mobile and small devices
with low-bandwidthor intermittentnetwork connectivity
introduces new constraints on synchronization algorithms.

We presentnewalgorithmsfor trackingupdatesin a
optimistically replicatedhierarchicaldata. Thealgorithms
usea pair of vectortimes,onetrackingmodificationsand
a second tracking synchronizations; previous systems have
typically used only a single vector conflating the two
meanings.Algorithms usingvector time pairsareconsid-
erably simpler and more flexible than traditional algo-
rithmsusingsingle vectors.Vector time pairs are also sig-
nificantly easierto compressthan single vectors. These
claims are supportedby a theoreticalanalysisas well as
simulation of the algorithmson various syntheticwork-
loads derived from real-world traces.

1. Introduction

Data replication plays an increasingly important role
in today’s computingenvironments.A typical computer
usermight storedataon a sharedfile server,anoffice PC,
a homePC, a notebook,and a PDA. The industry-wide
SyncML initiative [27] is aimedat making replicationof
dataeasierand thus more commonplacethan it is today.
The increasingstoragecapacitiesof handhelddeviceslike
PDAs,musicplayers,andevenUSB memorysticksmake
themattractiveways to transferlargeamountsof dataas
well. It seemsa safebet that handhelddeviceswill con-
tinue to decreasein sizebut increasein storagecapacity.
All of thesetrendssuggestthat the managementof repli-
casandreplicateddatawill becomeevermore centralin
tomorrow’s computing environments.

The replication in the examplesjust given is typi-
cally optimistic , meaning that any replica can initiate
changesto anydata. Previousresearchon theuseof opti-
mistic replicationhasfoundthatconflictsarerarein many
applications.For instance,in file systems,most files are

written only by oneuser,who actsasa humanwrite token
[19]. Indeed, disconnectedAFS [13], Coda [14], and
Ficus [7] all employ optimistic replication to provide a
high availability file systemin thefaceof limited commu-
nication.

Optimistically replicated systems must employ
somebookkeepingschemeto propagatechangesandalso
to detectconcurrentchanges,or conflicts, that needto be
reconciled.We presentvector time pairs asa newway to
trackchangesin anoptimistically replicatedsystem.Vec-
tor time pair algorithmshavethe following desirable prop-
erties:
" cansupportan arbitrarynumberof replicaswith arbi-

trary dynamic communication patterns
" replicasdo not needto be addedto or removedfrom

the system explicitly
" synchronizationsfocus very quickly on the data that

needs to be transferred
" partial synchronizations are easily implemented
" ‘‘sink’’ replicas, which never initiate file system

changes, cause no extra work for other replicas
" the performanceof the systemis independentof the

synchronization frequency among the replicas
" none of the algorithms attempt to construct global

knowledge about the system
As discussedlater in thepaper,no currentalgorithmsused
for optimistic replication have all of these properties.

The main contribution of this paperis the insight
that traditionalsynchronizationmetadatacanbeseparated
into metadatatracking ‘‘what you have’’ and metadata
tracking ‘‘what you know.’’ The vector time pair algo-
rithms follow immediately from this insight.

Roadmap

In the remainderof this paper,we review the sce-
nariosthat a synchronizationalgorithmmusthandle(sec-
tion 2). Thenwe presentthe vector time pair algorithms
(section3). We describeoneconcreteimplementationof
vectortime pairsin a user-levelfile synchronizer(section
4). Using a simulation framework to level the playing
field, we thencomparevectortime pairswith versionvec-
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tors (section 5) empirically. Finally we discuss related
work and how it has been constrained by less flexible
algorithms (section 6).

2. Synchronization semantics

Before discussing synchronization algorithms, we
must define synchronization. A strictly formal mathemat-
ical definition is an ongoing research topic (see, for exam-
ple, Balasubramanian and Pierce [1], Ramsey and Csirmaz
[24], and Pierce and Voilloun [22]), so we will make do
with a less formal but still precise definition. We believe
our characterization is reasonable because it is similar to
the characterization given by Parker in the original paper
on version vectors [20] and because, when restricted to a
pair of replicas, it is equivalent to the definition of syn-
chronization used by the popular Unison synchronizer [1].

We consider only unidirectional synchronizations,
in which changes from one replica are propagated to a sec-
ond, but changes on the second do not propagate to the
first. There are many cases in which this is desirable. For
example, the second machine might be less trusted than
the first. More importantly, unidirectional synchroniza-
tion is the more general case: we can build bidirectional
synchronization by applying unidirectional synchroniza-
tion once in each direction. When we say that B synchro-
nizesfrom A, we mean that a unidirectional synchroniza-
tion propagated information from B to A.

We want synchronization to provide a ‘‘no lost
updates’’ guarantee. Specifically, suppose each file is rep-
resented as a log of updates made over the course of its
lifetime, beginning with its initial creation. If two replicas
have different copies of a file (call the copies FA and FB),
it is safe for FA to replace FB only if FA’s log is a prefix
of FB’s. If this is satisfied, then all of the updates repre-
sented by FB are also present in FA: eliminating FB will
not lose updates. To explore how the ‘‘no lost updates’’
rule guides synchronization, we present a sequence of
examples.

Suppose a single file is kept on a pair of replicas A
and B. Consider the following three graphs showing how
information about the file might propagate between the
replicas:
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In each picture, each row shows the state of the replicas at
one time unit. Each circle represents the file as it exists on

a particular replica at some point in time. Modifications
to the file contents are marked by an ‘‘m.’’ As a further
reminder, file contents are represented by the patterns
inside the circle. Arrows indicate the flow of file system
information, so that a downward arrow reflects the file
staying on the replica over time, while a diagonal arrow
marks a unidirectional synchronization between the repli-
cas at its endpoints. Synchronizations happen ‘‘between’’
time units.

There are three important facts about the notation
used in the diagrams:
" First, two changes are considered independentif there

is no path in the synchronization graph from one to
the other. For reasons of brevity, independent
changes in the examples are shown as happening at
the same time on both replicas, but that is not neces-
sary. The only necessary condition is that the first
change is done without knowledge of the second, and
vice versa.

" Second, we have shown a global clock marking time on
all replicas, but this for the purpose of exposition
only. The replicas need not share a common clock:
synchronization decisions depend only on the past
synchronization history (edges in the graph), not on
the exact times of synchronization.

" Third, by clock we mean a monotonically increasing
value, typically implemented as an event counter. We
do not mean the system’s ‘‘wall clock’’ time, which
may be unreliable in various ways.

All three graphs begin the same way. At time 1, A
creates a new file. B synchronizes from A, so at time 2 the
file exists on B.1 At time 3, one or both replicas change
the file. Then A synchronizes from B, with varying
results:
" (i) A changes its copy of the file. The ensuing synchro-

nization is a no-op, since B has no changes to report.
(Synchronization in the opposite direction would
copy the updated file from A to B.)

" (ii) B changes its copy of the file. The ensuing syn-
chronization copies the new file from B to A.

" (iii) both A and B change their copies of the file. The
ensuing synchronization cannot safely choose one
replica’s copy, since doing so would lose the change
made by the other replica. The modification histories
are (A:1 A:3) and (A:1 B:3). Neither is a prefix of
the other. The synchronizer reports a conflict to be
resolved by external means, either automatic or man-
ual.

__________________
1 We have not explained the reason the synchronizer chose to copy the
file from A to B. We will cover file creation in the next sequence of
examples.
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The graphs allow an alternate characterization of the
‘‘no lost updates’’ requirement. A version v 1 of a file
may be replaced by another version v 2 if v 2 is the descen-
dant of some node with the version v 1 .

The three graphs above illustrate a synchronizer’s
choices when presented with differing versions of a file:
do nothing, copy from one replica to another, or report a
conflict. The next four graphs illustrate the choices a syn-
chronizer has when confronted with two replicas, only one
of which has an existing file. In these graphs, a light grey
filled circle marks that the file has been deleted from the
replica.
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As before, our examples all start with A and B holding the
same file at time 2. The synchronizer’s behavior when
presented with only one copy of a file depends on the past
history:
" (iv) If B deleted the file, synchronization propagates the

deletion to A.
" (v) If B deleted the file, but A modified it indepen-

dently, synchronization reports a conflict: the deletion
is incompatible with the update.

" (vi) If A deleted the file, synchronization is a no-op.
(Synchronization in the opposite direction will delete
the file from B.)

" (vii) If A deleted the file and propagated the deletion to
B but then B created a new version of the file, syn-
chronization propagates the new file to A.

Thus the possible choices are: delete a file, report a con-
flict, do nothing, or create a file.

In all seven cases, it should be clear that the correct
decision is entirely determined by the ‘‘no lost updates’’
principle.

3. Vector time pairs

In this section we present the vector time pair algo-
rithms. Starting with the synchronization of a single file,
we consider the time and space requirements and in both
cases find effective ways to reduce the requirements.

In our algorithm, each replica maintains two vector
times [4] [15] for each replicated file and directory. A
vector time is an array of local machine times (event coun-
ters), one for each replica in the system.

The first vector time is a modification time; it tracks
the modification history of the file. The vector entry for
replica r is the time when r last modified the file. For
example, at the end of the scenario depicted in figure (ii)
above, the file on A has modification time (A:1 B:3).
The second vector time is a synchronization time; it tracks
the synchronization history of the file. The vector entry
for replica r is the time when this file last passed through r
on its way to the current replica. At the end of scenario
(ii), the file on A has synchronization time (A:4 B:3).

The modification time tracks ‘‘what we have’’ in
the file; in the example, (A:1 B:3) records that we have
the changes made by A at time 1 and B at time 3. In con-
trast, the synchronization time tracks ‘‘what we know’’
about the file; In the example, (A:4 B:3) records that we
know about the file as it existed on A at time 4.

Another way to think about the vector times is that
they encode the reachable ancestors of a file version
(graph node). The modification time specifies, for each
replica, the most recent reachable ancestor at which a
modification occurred. The synchronization time speci-
fies, for each replica, the most recent reachable ancestor
on that replica. If we know one node on a replica is an
ancestor, we also know that all earlier nodes on that
replica are ancestors. Because of this, the synchronization
and modification times encode two related ancestor sets
for a given node. The synchronization and modification
sets provide enough information to make synchronization
decisions. As an example, consider scenario (ii) again.
The nodes involved in the synchronization producing A:4
are A:3 and B:3, which have synchronization and modifi-
cation sets as shown. The inner boundary marks the mod-
ification set, while the outer boundary marks the synchro-
nization set:
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It is safe to replace A:3 with B:3 because A:3’s modifica-
tion set is contained in B:3’s synchronization set: B:3
‘‘knows’’ about the file that A:3 ‘‘has.’’

This set comparison is implemented using vector
time comparisons. Comparing two vector times u and v
has four possible outcomes:
" u = v. The vectors agree on every element.
" u < v. The entries in u are less than or equal to the cor-

responding entries in v, but u≠v.
" u > v. The entries in u are greater than or equal to the

corresponding entries in v, but u≠v.
" uv. None of the above hold: u and v are incompara-
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ble. Some entries in u are greater than the corre-
sponding entries in v, while some are less.

These are the same outcomes that would be reached com-
paring the corresponding sets of nodes to see whether one
was a subset of the other.

The general synchronization decision can be
expressed as:

// synchronize file from A to B
sync(file) ≡

if m A ≤s B

// B knows about all of A’s updates
s B = max(s A ,s B )

else if m B ≤s A

// A knows about all of B’s updates
copy file from A to B
s B = max(s A ,s B )

else
// A doesn’t know about some of B’s updates
// and B doesn’t know about some of A’s updates.
// No way to proceed without losing updates.
report conflict

The vector times m A , m B , s A , and s B are specific to the
particular file being synchronized, but writing m A rather
than m A (file) is less cluttered. The comparison m A ≤s B

checks whether A’s modification set is contained in B’s
synchronization set. That is, it checks that all the updates
present in A are also present in B.

The first two tests check whether all of one copy’s
updates are present in the other copy. If so, the more com-
plete copy is used. In the final ‘‘else,’’ each copy has
updates not present in the other, so using either one would
lose updates. We cannot do that, so we report a conflict.

3.1. Time requirements

We have an algorithm that correctly synchronizes a
single file. One way to synchronize an entire file system
is to run the algorithm for each file in the system. When
the file system contains many files and only a few need to
be synchronized, running synchronization on every file in
the system wastes both time and inter-replica communica-
tion bandwidth. It would be useful to be able to prune
irrelevant paths from the search, quickly homing in on the
changed files.

We can do this by keeping a synchronization and
modification time for directories as well as files. The syn-
chronization time of a directory is the elementwise mini-
mum of the synchronization times of its children. In the
set analogy, the synchronization set is the intersection of
the children’s synchronization sets. The modification
time of a directory is the elementwise maximum of the
modification times of its children. In the set analogy, the

modification set is the union of the children’s modifica-
tion sets.

When synchronizing, a directory can be skipped if
the modification set on one replica is a subset of the syn-
chronization set on the other replica and vice versa. The
following algorithm only visits directories that need syn-
chronization:

// synchronize tree rooted at dir from A to B
sync(dir) a

if m A ≤s B

B has all the changes on A; do nothing
else

for each child in dir m A (child) ≤s B]
sync(child)

s B = max(s A ,s B )

The file synchronization algorithm must be tweaked as
well. After copying a file from A to B, the modification
time of the file’s parent directory must be set, along with
that parent’s parent directory, and so on to the root of the
tree.

// synchronize file from A to B
sync(file) a

if m A ≤/ s B and m B ≤/ s A

report conflict
else if m A ≤s B

B is up-to-date
s B = max(s A ,s B )

else
copy file from A to B
m B = m A

mtimeup(parent(file), m B)
s B = max(s A ,s B )

mtimeup(path, m) a
m B (path) = max(m B (path) ,m)
if path has parent

mtimeup(parent(path))

Using this algorithm reduces the time required to identify
the needed synchronization tasks. Whereas the previous
algorithm ran in time proportional to the number of files
in the system, this algorithm runs in time proportional to
the number of changed files.

3.2. Space requirements

Each replica must maintain two vector times for
every file and directory in the file system. Each vector
time has a size proportional to the number of replicas in
the system. In a naive implementation, a system with R
replicas storing D directories and F files requires
O(R(D + F)) space. This space requirement can be
reduced significantly with two important optimizations.
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Both rely on the fact that the underlying vector representa-
tion omits zero entries, as we have have done in this pre-
sentation. That is, it is cheaper to store (A:3) (implicitly
(A:3 B:0)) than (A:3 B:1).

The first optimization comes from the observation
that, by definition, synchronization times are monotoni-
cally increasing along each path in the file system. Thus,
for a given file or directory, we can store just the delta
between its synchronization time and its parent’s synchro-
nization time. This scheme is further helped by the obser-
vation that that there are likely to be very few distinct syn-
chronization times on a given replica. To see why, sup-
pose that synchronizations always successfully synchro-
nize the entire file system. The synchronization histories
(and thus the synchronization times) for all files and direc-
tories in the system will be identical. Now suppose that
the synchronization times have diverged, and there are
many different synchronization times on a particular
replica. Once that replica has synchronized its entire file
system with each of the other replicas, directly or indi-
rectly, all files and directories on the replica will be
equally up-to-date and thus have identical synchronization
times. In the presence of full synchronizations, the file
system metadata will regularly be in states in which there
is a single unique synchronization time. Regular partial
synchronizations of entire subtrees will have the same uni-
fying effect on those subtrees, so even if full synchroniza-
tions are rare, partial synchronizations might focus on
large trees like /usr/local or /home/you or C:\My

Documents, having a similar effect: there will only be a
small number of unique synchronization times on the
replica, one for each separately synchronized subtree.
Because of this, most of the stored deltas will be empty
(zero)! If there are S unique synchronization times
throughout the tree, the storage cost of the synchronization
times is only O(RS + F): the extra F is a constant space
per-file to store the zero delta.

The second optimization comes from the fact that
modification times can often be reduced to singleton vec-
tors. Consider the following example:
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Suppose that a file or directory with modification time
(A:2 B:2 C:2) exists on replica B, depicted in (i). Now
suppose that the file is modified on B at time 3. The stan-
dard vector time manipulations would change the middle
element of the vector to B:3, yielding (A:2 B:3 C:2),

depicted in (ii). We argue that given the synchronization
algorithm, it is safe instead to set the modification time to
the singleton vector (B:3), depicted in (iii).

The synchronization algorithm only compares mod-
ification times to synchronization times. Because the time
on B is currently 3, synchronization vector times s on
other replicas cannot contain a B element greater than or
equal to 3. Whether we set the modification time m to
(A:2 B:3 C:2) or to (B:3), the test mfs will be false for
every s currently on other replicas. We also need to check
that at an s will not be introduced later such that
(A:2 B:3 C:2) ≤/ s but (B:3)fs, but this is simply rea-
soned. In order for a replica to get a synchronization time
s greater than (B:3), it must know about the contents of B
at time 3. But since (A:2 C:2) were part of the contents
of B at time 3, (A:2 C:2)fs so (A:2 B:3 C:2)fs.
Thus (B:3) and (A:2 B:3 C:2) are indistinguishable
from the point of view of our synchronization algorithm.
The same argument applies in general: whenever a replica
notes a local modification to a file or directory, it can
safely set the modification time on that file or directory to
the singleton vector corresponding to the current time on
the replica. This can result in a space savings if the vector
representation omits the zero entries, as we have done in
this presentation.

Since file modification times are propagated
between replicas by direct copying, file modification times
will stay singletons as they pass from replica to replica.
Directory modification times are incorporated via the
‘‘max’’ operator, so directory times will still be full vec-
tors in most cases. Since only the directory times are R-
element vectors, the space requirement for the modifica-
tion times reduces to O(RD + F).

Together, these optimizations reduce the per-replica
space requirement for metadata to O(RS + RD + F). Since
S is expected to be very small, this reduces to O(RD + F).

3.3. Delete propagation

The algorithm presented so far requires replicas to
keep metadata about deleted files. This metadata can be
thought of as a deletion notice that propagates in the same
manner as the file itself would have. It is desirable that
replicas be able to destroy deletion notices eventually, in
order to reclaim the space they occupy. A deletion notice
covers not only the most recently deleted file but all
deleted earlier incarnations of the file.

The easiest way to allow destruction of deletion
notices is to change the algorithm used for file synchro-
nization when one of the two files is actually a deletion
notice. Specifically, we restructure the algorithm so that
only the synchronization time of the notice is needed. In
order to do this, we must add a third piece of metadata:
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each extant file is tagged with its creation time, a singleton
vector.

With this extra data, we can make decisions about
create and delete operations while requiring that the dele-
tion notice contribute only a synchronization time. The
new algorithm is shown below. (We show a bidirectional
synchronization for brevity. The appropriate unidirec-
tional algorithms can be obtained by restricting changes to
A or to B as needed.)

// file exists on A, but not on B
sync(file) a

if cA ≤s B

// B has a deletion notice for A’s file ...
if m A ≤s B

// ... and the deletion covers all A’s changes
delete file on A
mtimeup A ( file ,now A )
s A = max(s A ,s B )

else
// ... but A has new changes to the file
report conflict

else
// B has never heard of this file
copy file from A to B
m B = m A

mtimeup B ( file ,m A (p))
s A = s B = max(s A ,s B )

Having the creation time cA lets the algorithm decide
whether B has ever heard of the file that A has. If cA ≤s B

(that is, B knows about the creation of the file) yet B does
not have the file, then B must also know about a deletion.
The algorithm must then check whether B knows about all
the changes to the file that A has. If so, then the deleted
version of the file B knows about included all the updates
A has, so deleting A’s copy will destroy only updates that
were destroyed by the original deletion. On the other
hand, if B does not know about all of A’s changes, then a
conflict must be reported: deleting A’s copy would lose
updates that the original deletion did not cover. Finally, at
the outer ‘‘else’’ now, if cA ≤/ s B , then B does not know
anything about this file and should create.

Once the directory containing the deletion notice is
completely synchronized, the synchronization time on the
directory and the deletion notice will be the same. From
that point onward, they will always be the same (unless, of
course, a new deletion notice is received). Thus the dele-
tion notice can be removed. If the synchronization time
from the deletion notice is needed in the future, the syn-
chronization time on the directory can be used in its place.
Collection of deletion notices meshes well with the syn-
chronization time delta encoding described above: once
the delta is zero, the deletion notice can be removed.

Destroying deletion notices is a local operation; it
depends only on other metadata already kept by the
replica. By storing some extra metadata for each active
file (the creation time), we have reduced the amount of
metadata for each deleted file to something that can be
reclaimed easily.

3.4. Conflict resolution

Although the synchronization algorithm relies on
external means to resolve conflicts, a good synchroniza-
tion algorithm needs to be able to propagate the resolu-
tions, so that the same conflicts are not reported multiple
times. For example, consider the synchronization
sequence in (i) here:
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Whether a conflict occurs at B:4 depends on the resolu-
tion of the conflict at B:3. (ii)-(iv) illustrate the cases:
" (ii) If the conflict at B:3 is resolved in favor of B:2’s

copy then there should be no conflict at B:4, because
A:3 is derived from B:2.

" (iii) If the conflict at B:3 is resolved in favor of C:2’s
copy then there should be a conflict at B:4, because
A:3 is not derived from C:2.

" (iv) If the conflict at B:3 is resolved by a modification
that merges B:2’s and C:2’s copies, then there should
be a conflict at B:4, because A:3 is not derived from
B:3.

This is handled easily by the vector times: when conflicts
are resolved, the modification time on the file is set to the
chosen resolution, and the synchronization time is set to
the union (elementwise max) of the two synchronization
times on the conflicting files. Doing this records that the
replica storing the resolved file ‘‘knows’’ about both the
files that conflicted even if it decides to keep only some of
the changes.

3.5. Replica deletion

Many replicated systems track the current state of
other replicas and change behavior based on whether the
system as a whole is up-to-date. In such systems, a replica
that is no longer participating keeps the whole system
from being up-to-date. In order to make progress the
replica must be removed, explicitly or implicitly. For



- 7 -

example, Ficus and Coda require explicit removals, while
Pangaea [25] removes a replica if it is inactive for 30 days.
Neither solution is particularly attractive: explicit removal
requires manual effort and introduces the possibility of
human error, while implicit removal is only approximate.

Using vector time pairs removes this restriction:
replicas that are no longer participating cause no trouble
for the rest of the replicas.

3.6. Partial synchronization

It is worth mentioning explicitly that the algorithm
as presented ‘‘remembers’’ partial synchronizations. That
is, suppose we synchronize only the directory subtree
rooted at /usr/sys. This will update the synchronization
time of /usr/sys and all files and directories below it. If
we then we do a full synchronization with a replica that
has no additional changes to /usr/sys, the updated syn-
chronization time on the directory will cause the algorithm
to ‘‘remember’’ that the partial synchronization occurred,
and thus it will not consider /usr/sys further.

The method of recording partial synchronizations
falls out naturally from the rest of the algorithms. This
seems a trivial point, but we will see later that other sys-
tems have struggled quite a bit with partial synchroniza-
tion.

3.7. Algorithm summary

In summary, each replica stores a vector time pair
for each replicated file or directory. The pair includes a
synchronizationtime, which encodes what the replica
‘‘knows’’ about a file or directory and a modification
time, which encodes what changes the replica ‘‘has’’ for a
given file or directory. The two can be different because
the synchronization time includes knowledge of non-
changes: if a file has synchronization time (A:4) but mod-
ification time (A:1) then we know about everything that
happened up until time 4 on replica A, but the most recent
change that we have is from time 1.

Having both vector times facilitates pruning of syn-
chronizations so they only consider relevant files, encod-
ing of conflict resolutions, and recording of the results of
partial synchronizations. The storage requirements for the
vector times can be significantly reduced by delta-
encoding the synchronization times.

4. Implementation

We have implemented the vector time pair algo-
rithms in a user-level file system synchronizer called Tra
(the name has been changed for anonymity purposes). We
built an initial prototype in 1,800 lines of Python. The
production version of Tra is implemented in 12,000 lines
of portable C. The amount of operating system-specific

code is minimal, typically between 200 and 500 lines for
each system. Tra runs on various Unix flavors, including
Digital Unix, FreeBSD, Linux, NetBSD, OpenBSD, and
SunOS. In this section we describe the implementation of
Tra, starting with a high-level feature overview and then
considering some of the low-level engineering.

4.1. High-level features

Tra delivers on the features promised by the vector
time pair algorithms:
" allows arbitrary communication patterns
" synchronization time proportional to amount of

changed data
" easy partial synchronization
" unidirectional or bidirectional synchronization
" support for ‘‘sink’’ replicas
" has no explicit replica deletion

We use Tra via a simple command-line user inter-
face. The command

% tra [ −1ab ] repl-a repl-b [ path ... ]

synchronizes the replicas repl-a and repl-b. Tra runs a
partial synchronization rooted at each named path. If no
paths are named, Tra performs a full synchronization.

By default, synchronization is bidirectional. The −1

flag causes synchronization to be unidirectional, with
information flowing only from repl-a to repl-b.

Conflicts are reported during the synchronization.
They can be forced to resolve in favor of the copy on
repl-a or repl-b by invoking tra with the −a or −b flags.
A typical synchronization consists of running tra fol-
lowed by tra −a or tra −b or both, explicitly naming the
paths to resolve.

4.1.1. Sink replicas

A sink replica is one which accepts changes from
other systems but never initiates or propagates them. (It is
tempting to call such replicas read-only because they
never write changes to other servers, but that is confusing
since they are written to by other servers.) Sink replicas
can be implemented by always running tra −1 with the
sink replica as repl-b. Such synchronizations are no-ops
for its local data and metadata do not change at all. That
is, sink replicas cause zero overhead for the rest of the sys-
tem. Thus the system can scale to support an arbitrary
number of sink replicas.

We considered making ‘‘sink’’ an explicit property
tied to a replica, but it seems that whether a replica is a
sink often depends on who the replica is synchronizing
with. For example, an operating system distribution using
Tra might have a handful of engineers who synchronize
with each other and a few distribution servers. Synchro-
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nizations between the developers and the servers would be
bidirectional. On the other hand, the system’s users could
use Tra to synchronize their own machines with the distri-
bution servers. In that case, the user machines would act
as sinks. Thus, whether a replica is a sink in a particular
synchronization could be a policy decision made based on
authentication or some other higher-level mechanism.

4.1.2. Automatic conflict reconciliation

Once conflicts are detected, the default behavior is
to report them, leaving the user to resolve them. Files
might be identical have different modification histories,
causing the vector time pair algorithm to report a conflict.
Tra could report this as a conflict, but in the common case
this is useless: the user has little choice but to merge the
two and plod on. Instead, Tra automatically resolves con-
flicts involving identical files. This behavior can be
turned off, but we have found that it is a good default. It
is particularly useful when merging two file trees that
have previously been kept in sync by other means.

Early prototypes of Tra allowed the user to specify
an external program to handle reconciliation. We found
the most common reconciliation was the one above. With
that case handled, we have not felt the need for a user-
level reconciler enough to implement it in the current ver-
sion of Tra. Coda [14] used a user-level reconciler to
great effect for certain kinds of files, so it seems likely that
we will add support for it to Tra in the future.

4.1.3. Error messages

We quickly discovered that good error messages are
essential to understanding Tra’s behavior. When it
detected an update/update conflict, the original prototype
printed
% tra titanic lusitania usr/sys
usr/sys/ken/prf.c: update/update conflict
%

which was clearly not enough to understand what was
going wrong. Unfortunately, the vector times do not help
much. Printing
% tra lusitania titanic usr/sys
usr/sys/ken/prf.c: update/update conflict
lusitania’s copy last modified at britannic:34
titanic’s copy last modified at titanic:762

%

is only slightly better. We learn that the conflict is
between a write on britannic (that has propagated to
lusitania) and a write on titanic, but the times are
counters, meaningless to the user. To address this, we
added wall clock times to the vector entries. The wall
clock times are ignored in the vector time comparisons but
propagate with the rest of the vector. If Tra is running on
a file system that records the user who last modified each

file, it records and propagates that information too. These
make for much better error messages:
% tra lusitania titanic usr/sys
usr/sys/ken/prf.c: update/update conflict
lusitania’s copy last modified on britannic \
Sun Nov 11 17:33:01 EST 2001 (#34)

titanic’s copy last modified on titanic \
Mon Nov 12 09:12:31 EST 2001 (#762) by ken

%

In this example, britannic does not record the last
writer, so there is no last writer shown in the first record.

4.2. Low-level engineering

Internally, Tra is structured as a synchronizer pro-
gram (sync) that coordinates the synchronization of a
‘‘from’’ and ‘‘to’’ replica server (srvs) via remote proce-
dure calls:

sync

srv
to

srv
from

The srv programs are charged with maintaining a local
database of synchronization and modification times,
which the sync program queries and modifies throughout
the synchronization. The database also typically contains
system-dependent signatures of the files; these signatures
are used by the srv programs to detect when a file
changes. The srvs use a combination of the st_dev,
st_ino, and st_mtime or st_mtimespec fields of the stat
structure.

Because of the split between sync and srvs, the
programs may all run on different systems: keeping the
srv file system sweeps local is a big win, as is being able
to run sync on either the ‘‘from’’ or the ‘‘to’’ system (or a
third system).

The replica names provided to sync are paths to
executables, usually shell scripts, that take care of estab-
lishing a connection to the desired machine and invoking
srv. Thus the connection protocol is left unspecified, and
could be ssh [30], local execution, or anything else.

4.2.1. Communication structure

Internally, the sync module is structured as a collec-
tion of cooperatively scheduled user-level threads commu-
nicating via queues and stacks, in the style of Hoare’s CSP
[12] and Pike’s Newsqueak [23]. (We use a simple
custom-built threading library that is about 1000 lines and
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requires about 20 lines of code for each new architecture.)
The main departure from the CSP/Newsqueak model is
that some queues are arbitrarily buffered to avoid dead-
locks. There is no visible locking in the main program: all
synchronization and scheduling is managed via the com-
munication channels. The diagram below illustrates the
main modules and the communication patterns between
them:

UI

scan

work

RPC ‘from’

RPC ‘to’

The connections to the RPC modules are unbuffered chan-
nels over which RPC messages are sent.

The buffered queues and stacks hold SyncPath

structures, which represent paths currently being synchro-
nized. The user interface sends paths to be scanned to the
scan module using a buffered stack. The scan module
fetches paths off the stack and scans them. It recursively
handles directories by pushing the children of the direc-
tory onto the stack. We use a stack instead of a queue to
force a depth first traversal of the file system rather than a
breadth first traversal, the latter requiring much more
buffer space. When the scan module decides that there is
file system work to be done, like copying or removing a
file, it updates the SyncPath structure and adds it to the
work queue. The work module carries out the operation.
If an error occurs while processing a path in either mod-
ule, the SyncPath is marked with the error and added to
an event queue read by the user interface. When synchro-
nization of a particular path is finished, the SyncPath is
sent along a return queue to the module that originally
queued it (either the user interface or the scan module).
Structuring the main synchronization in this manner
allows the user interface flexibility to change the configu-
ration. For example, the command-line interface has a −n

flag that runs the synchronization in ‘‘no-op’’ mode, print-
ing the operations that would be carried out but not actu-
ally executing them. This mode is implemented by
replacing the work module with a different module that
prints the work to be done rather than doing it. As another
example, an extra module could be inserted ahead of the
work module to confirm the work queue with the user or
to run a plausibility checker to avoid replicating accidental
data loss from one site to another [6].

4.2.2. Multithreading

Tra is almost always invoked with at least one of
the two srvs on another computer across a network. The
RPC modules allow multiple outstanding RPCs; to take
advantage of this, the sync and work modules run multiple

threads that process SyncPaths from the respective
queues.

We would like to keep enough RPCs outstanding to
make good use of the network and keep TCP’s congestion
window large. This is more important on low bandwidth
and high latency network connections. At the same time,
we would like to keep the work queue and scan queue
lengths short to avoid wasting resources. Exploring
appropriate dynamic adjustment of the thread allocations
is future work; we hope that some of the techniques used
in SEDA [29] will be useful here.

4.2.3. Deletion notices

One of the most satisfactory parts of Tra is the code
that deals with the cleanup of deletion notices. The srv

programs interact with a database of Stat structures con-
taining the metadata for each file and directory in the sys-
tem. Deletion notices are specially marked Stat struc-
tures. When the database code is asked to store a deletion
notice for a path, it silently discards the notice if the syn-
chronization time of its parent directory is large enough.
Similarly, when the database code is asked for the Stat

structure for a path about which there is no information, it
synthesizes a deletion notice using the parent directory’s
synchronization time. The synchronization algorithm
implementation is blissfully unaware of this behind-the-
scenes shuffling, just as it is unaware of the delta encoding
of the synchronization times. As far as the sync module
is concerned, deletion notices never disappear.

4.2.4. Quick copy and comparison

Tra implements a variant of the rsync [28] algorithm
for quickly copying a file when the destination already has
a similar file. The variant inserts boundaries using a rol-
ling hash function as in [17] to reduce the number of
hashes that need to be computed. This algorithm implic-
itly assumes that two different blocks of data will always
have different SHA1 hashes. The auto-resolver described
earlier also uses SHA1 hashes to avoid copying the file
just to discover that it is identical to the file it already had.
Henson [11] presents interesting arguments against the use
of so-called ‘‘compare-by-hash’’ algorithms. We decided
that we’re willing to take the risk. Paranoid users can dis-
able both optimizations.

5. Evaluation

We evaluate vector time pairs and Tra by comparing
them to relevant related systems. Vector time pairs are
qualitatively different from other algorithms used to track
synchronizations. Thus, we first present a qualitative
evaluation, concentrating on whether the various algo-
rithms support particular features. Vector time pairs are
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similar enough in functionality to vector time that it is
meaningful to quantitatively compare a few performance
characteristics of the two schemes. We do that second.
Finally, to establish that the implementation of Tra is
competitive with other similar tools, we present a rough
performance comparison.

5.1. Qualitative evaluation

Systems supporting optimistic replication have tra-
ditionally used (usually one of, but sometimes combina-
tions of) three basic methods:
" central coordination
" logging
" version vectors

This section compares vector time pairs with these meth-
ods on various points. Some of the points will be revisited
quantitatively in the next section. First we give a brief
overview of the algorithms.

By central coordination we mean a system where
one master server coordinates a collection of replicas.
Replicas only synchronize with the master, not with each
other. The master keeps a per-file version number of its
own, and the replicas need only keep track of which ver-
sion of each file they currently have. A typical example of
a centrally coordinated system is the CVS [2] source con-
trol system.

In a logging system, replicas keep their own logs of
changes they make to the data. A replica only ever writes
to its own log, but it reads the logs of all the other replicas,
using all the logs to construct its conception of the data.

Version vector schemes associate a vector time
called a version vector with each file in the replicated sys-
tem [20]. Version vectors can be thought of as a confla-
tion of modification and synchronization times. The gen-
eral synchronization algorithm using version vectors is the
algorithm using modification and synchronization times,
but with the version vector v substituted for the two vector
times m and s.

// synchronize from A to B
sync(file) a

if vAfvB

B is up-to-date; do nothing
else if vB < vA

B can safely be updated by A
else

return conflict

As we will see, the conflation of the two ideas into one
vector makes version vector algorithms more complicated
than vector time pair algorithms.

5.1.1. Loose replica membership

In particularly dynamic systems, it is desirable that
replicas can come and go easily and with little overhead.

Systems based on central coordination have no
problem adding more replicas: the replicas keep track of
their state relative to the master, and the master needn’t
keep any per-replica state at all.

Logging systems typically do have a large overhead
associated with adding new replicas, since each replica
maintains its own log, and the other replicas need to know
about the log. Most operations scale with the number of
logs, so this overhead is significant.

Version vector systems also have a large overhead
associated with adding and removing replicas. Having
more replicas makes the version vectors larger. Version
vector systems typically use a two-phase distributed gar-
bage collection algorithm to decide when particular
updates have been distributed to all replicas in the system.
Once an update has been applied everywhere, the meta-
data concerning that update can be destroyed. These glo-
bal algorithms are complicated and depend on having all
replicas available to participate. This in turn requires hav-
ing a precise idea of which replicas are in the system.
Even ‘‘sink’’ replicas would need to be included in these
proceedings. Thus other replicas must be informed when
a replica leaves. The generation of these notices is prob-
lematic: if it is automated, the system might incorrectly
decide a replica is dead when in fact it is on an extended
vacation. On the other hand, if it is manual, it is cumber-
some and open to human error. Version vectors can be
used without the global algorithms, but the global algo-
rithms are often necessary to help the system scale better:
otherwise old data lingers in the system forever.

The vector time pair algorithms avoid these prob-
lems by restructuring the metadata so that maintenance
algorithms are always purely local operations, eliminating
the need for replicas to track the system as a whole.
‘‘Sink’’ replicas are particularly cheap: the first-class
replicas even record their presence in any way.

5.1.2. Performance independent of synchronization
frequency

In a system with a diverse replica set (as would hap-
pen with a collection of PDAs and other mobile devices),
it is desirable that the performance of the system does not
depend on the slowest participant. In this case by slow we
mean that the replica does not synchronize with others
very frequently.

In a centrally coordinated system, the coordinator
need not record any per-replica information. The replicas
need not record any information about other replicas
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either. Thus, performance must be independent of syn-
chronization frequency: each replica is oblivious to the
existence of the others.

Logging systems are mostly independent of syn-
chronization frequency as well: they have no operations
that depend on action by other replicas. Still, the price
they pay for this is that old information stays in the system
forever. It is not typical for logging systems to prune their
logs once all replicas have been made aware of the
changes; if a logging system wanted to do this, it would
need to resort to global knowledge algorithms like version
vectors employ.

Version vector systems are independent of synchro-
nization frequency only if they do not use the global
knowledge algorithms to do background cleanup. The
global algorithms require two rounds in which every
replica participates, and thus they are only as fast as the
slowest participant.

The vector time pair algorithms are not sensitive to
synchronization frequency. If a replica does not synchro-
nize often, then it alone bears the burden of tracking its
state versus the state of the other replicas. The synchro-
nization time allows an out-of-date replica to reason ‘‘I
wouldn’t have known about that, so it must be new’’ or ‘‘I
should know about that, so I must have deleted it.’’ The
replicas individually keep track of how much they know.
In contrast, in the version vector algorithms, replicas keep
track of how much everyone else knows.

5.1.3. Partial replicas

In a diverse system, another desirable feature is par-
tial replicas, replicas which store only a fraction of the full
replicated data set. For example, a user might synchronize
his entire home directory between a collection of
machines at work but only synchronize his email and cal-
endar to his PDA or his home computer.

As usual, centrally coordinated systems have no
problem supporting this. The individual replicas keep
track of which data they have from the server and what
version it is. The server never needs to know that the
replica is only storing a subset of the data.

Logging systems also have no problem supporting
this: the partial replica would just ignore the events in the
other replica logs: incorporation of log entries about non-
replicated data is a no-op.

As usual, version vector systems have trouble with
partial replicas only in the parts concerning the global
knowledge algorithms. In order to carry out the algo-
rithms correctly, the other replicas must be aware of
whether a given replica is interested in a particular file.

With some effort, this can be made to work, but it is awk-
ward: the partial replica would be constantly telling the
other replicas that it didn’t care about the proceedings
involving this or that file.

The vector time pair algorithms support partial
replicas easily. Like in the other algorithms, it is easy for
a replica simply to ignore the parts of the data it does not
want to see. Unlike in the logging and version vector sys-
tems, the vector time pair algorithms do not care about
global state, and thus the fact that the replica is partial
needn’t be announced to all.

5.1.4. Quick synchronization

In a system where the amount of data is large but
there are relatively few changes between synchronizations,
it is desirable that synchronizations take time proportional
to the amount of changed data rather than the amount of
data as a whole.

Centrally coordinated systems could add synchro-
nization times along with an event counter on the central
server to implement such quick synchronizations. This
would effectively be a centrally coordinated system with a
logical time pair instead of a vector time pair, because
only one system is generating changes. The centrally
coordinated systems of which we are aware do not do this.
Instead, they synchronize the entire data set at each time.

Synchronization in logging systems is exactly pro-
portional to the amount of changed data, since synchro-
nization is just reading the new parts of the log.

Version vector systems cannot implement quick
synchronization without adding synchronization times (at
which point it would be a vector time pair system). Since
there is no easy way for a replica to summarize its state for
another replica, synchronization has no choice but to
examine every piece of data in the system.

Because synchronization in centrally coordinated
systems and version vector systems takes time propor-
tional to the amount of data being synchronized, systems
built in this manner typically make it easy for the user to
specify a partial synchronization. For example, by default
CVS synchronizes only the current directory and its chil-
dren. This default compensates for the slowness of a full
synchronization.

As discussed earlier, vector time pairs focus in on
the changed files very quickly: one replica can easily sum-
marize its state to the other, and then the second can send
only the relevant changes.

5.1.5. Metadata storage requirements

It is important that the synchronization algorithms
not have excessive metadata storage requirements, espe-
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Figure 1. Statistics about the FreeBSD CVS traces used. The x axis always plots real time, from May 1994 to February 2003. In the file
graph, the dotted line plots the total number of unique files seen until that time, while the solid line plots the number of files currently in
the repository. In the author graph, the dotted line plots the total number of unique authors seen until that time, while the solid line plots
the number of authors who have made changes to the repository in the last 30 days.

cially if they are to be used on small devices or in large
systems.

Centrally coordinated systems have minimal meta-
data to store. The server must maintain a version number
for each existing file, and the clients must remember that
version number for each file they have copied. The stor-
age requirements do not change as the number of replicas
increases.

A simple logging system keeps the entire log from
the beginning of time. This results in increasing storage
costs as time moves forward. Old log pieces can be
retired after an expiration time (at the risk of excluding
slow replicas) or after determining that the log entries
have propagated to all replicas (at the cost of a global
knowledge algorithm).

Version vector systems have less information than
logging systems but it still grows as the number of repli-
cas increases. If there are R replicas in the system, each
replica must store an R-element vector for each file. Thus
the metadata storage required per-replica increases lin-
early in the number of replicas. If global knowledge algo-
rithms or expiration times are used, this storage can be
reduced to be proportional to the amount of recent activ-
ity, with the same drawbacks that such techniques intro-
duced for logging above.

5.2. Quantitative algorithm evaluation

Version vectors and vector time pairs are similar
enough in functionality that that a quantitative comparison
of time and space requirements is meaningful. In order to
compare them, we built a simulation environment to mea-
sure the time and storage costs of the algorithms running
synthetic workloads.

5.2.1. Workload

We do not know of any common synchronization
benchmarks or traces of file activity on optimistically
replicated file systems that include details about when
synchronizations took place. Instead, we constructed a
synthetic workload using an optimistically replicated but
centrally synchronized system: the CVS version control
system. Specifically, we started with a CVS trace of
activity in the i386-specific part of the FreeBSD kernel
source tree (/usr/src/sys/i386) from May 1994
through February 2003. For each file creation, deletion,
and modification, the trace lists the date and the person
who made the change. The trace lists 20,605 events, 938
files, and 192 authors. In any given 30 day window, only
a couple dozen authors are actively making changes. Fig-
ure 1 describes the data in more detail.

The CVS traces are not a perfect fit for our simula-
tions: while there is information about when users
‘‘checked in’’ changes to the central tree (cvs commit)
there is no information about when users ‘‘checked out’’
changes made by others (cvs update). To use the traces,
we must add ‘‘checkout’’ events artificially. We created
two workloads from the traces. The first, called chain,
starts with all initial files on a replica named start.
When an author makes changes, he first synchronizes with
the previous author to make changes. For example, this
trace:
# time author op (m=modify) file
70082 bde m sys/i386/isa/ipl_funcs.c
79738 iwasaki m sys/i386/apm/apm.c
79738 iwasaki m sys/i386/include/apm_bios.h
85569 peter m sys/i386/eisa/if_fea.c
93477 alc m sys/i386/isa/ipl_funcs.c

shows four authors modifying various files in the tree.
When we use the trace to generate the chain workload,
we insert synchronization events as shown here:

sync from start to bde
70082 bde m sys/i386/isa/ipl_funcs.c
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sync from bde to iwasaki
79738 iwasaki m sys/i386/apm/apm.c
79738 iwasaki m sys/i386/include/apm_bios.h
sync from wasaki to peter
85569 peter m sys/i386/eisa/if_fea.c
sync from peter to alc
93477 alc m sys/i386/isa/ipl_funcs.c

This trace has the drawback that inactive replicas
are not communicating with active ones, which puts ver-
sion vector algorithms at a disadvantage. To level the
playing field, we created three more workloads p365, p90,
and p30 by inserting random extra synchronizations into
the chain workload. For each day in the trace, each
replica that has been active at some point in the past
chooses to synchronize with some random other active
replica with probability 1/p. For example, in the p365

trace, replicas initiate background synchronizations at the
rate of about once per year, in addition to synchronizations
necessary to follow the trace.

5.2.2. Time requirements

Measuring time as total number of paths visited dur-
ing the synchronization, vector time pairs perform better
than version vectors, as expected. The comparison is sim-
ilar on each of the four data sets, so we only show the
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graph for p30 here:

The dashed line is version vectors and the solid line is
vector time pairs.

5.2.3. Space requirements

The amount of space required by both basic version
vectors and vector time pairs is mostly independent of the
number of synchronizations. (Since modification times
get wider as the system gets older, increased synchroniza-
tion does a better job of propagating them, so there is a
small storage increase.) However, the version vector com-
pression algorithm, which uses global knowledge to
remove unneeded vector elements, depends heavily on the
rate of synchronization. We show the storage required for
the p365 and p30 traces here:
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We plot the number of vector elements stored divided by
the total number of files in the system, yielding the aver-
age number of vector elements per file. Again the upper
dashed line is basic version vectors and the solid line is
vector time pairs. The lower dashed line is version vec-
tors with the global knowledge algorithm. With frequent
synchronizations, version vectors require about the same
storage as vector time pairs. With only infrequent syn-
chronizations, though, vector time pairs do a better job.
Of course, as soon as a single replica stalls, the global
knowledge algorithm will stop making progress, and the
lower line will move back up to follow the upper line.

5.2.4. Deletion notices

The number of deletion notices in a version vector
system depends heavily on the synchronization rate.
These graphs show the number of deletion notices present
in the system for version vectors without collection and
with collection:
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Again, as soon as one replica falls behind in the version
vector system, the bottom line will rise to follow the top
line. The line for vector time pairs is the x axis: since all
synchronizations are full, deletion notices are collected
immediately.

5.3. Implementation evaluation

It is difficult to qualitatively compare Tra to other
programs. The program closest in spirit to Tra is Rumor,
which uses version vectors. We expect Tra to be simpler
because it uses vector time pairs rather than version vec-
tors. Unfortunately, there is little that can be said except
that Rumor is definitely larger, consisting of 82,000 lines
of C++ augmented by 9,000 lines of Perl. Much of the
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size difference between Tra and Rumor appears to be due
to differences in the implementation styles rather than to
the algorithms behind the tools. In any case, Rumor is
written in a now obsolete dialect of C++ and does not
compile on modern systems. We tried running an older
Linux distribution with the appropriate compiler but had
trouble finding supported hardware.

A quantitative comparison emphasizes software
engineering as much or more than the underlying algo-
rithms. Still, to show that the vector time pairs are not
causing undue inefficiency, we ran some microbench-
marks to see how Tra compares to Unison and rsync for
raw performance. The benchmarks are copy: copy a
195MB source tree containing 12,000 files from one
replica to a freshly initialized empty replica, nop: synchro-
nize the two 195MB trees after they are in sync, copy1:
propagate a newly-created 6MB file, and remove1: propa-
gate the removal of a single file. The tests were run on a
1.2GHz Athlon running FreeBSD 4.5 with 1024MB of
memory and an HP NetRaid-4M RAID 0 array. In order to
reduce cache effects, we read the contents of every file in
the tree before running copy, and we walked the whole
tree fetching metadata before running the other tests. The
results are:

benchmark Tra rsync Unison____________________________________
copy 235 51 33
nop 6.5 1.6 2.4
copy1 6.2 4.0 3.2
remove1 6.1 2.9 3.0







The large time difference between Tra and the other pro-
grams is mainly due to overhead in the RPC layer. Since
the test was run on a single machine, rsync and Unison
kept all operations local while Tra still set up pipes and
separate srv processes. The current implementation of Tra
does not perform aggressive batching of writes: many
threads are executing RPCs in parallel, but the small RPC
packets (tens of bytes each) are being written one at a time
via the write system call. We believe that batching the
many outgoing RPCs into a small number of larger write
calls will help this. This hypothesis is supported by the
copy1 results: when copying the 6MB file, we come close
to Unison and rsync’s performance, because then we are
issuing large RPCs and thus being penalized less. The
slowness of Tra has to do with our RPC layer rather than
the algorithms themselves.

6. Related work

The synchronization of replicated data is an old
problem. We view vector time pairs as another step in the
development of increasingly flexible solutions.

Even today, many replicated systems declare an
owner for each piece of data, and then only that owner can
publish changes to the data. This is the approach taken in
the domain name system (DNS) [16] and the Netlib math-
ematical software repository [6], in addition to countless
others. The approach works well when there are clearly
defined areas of responsibility (as in DNS and Netlib) but
grows cumbersome when ownership is more transient.

The next common approach, exemplified by the
CVS [2] source control system, is to declare one server the
single point of truth for all the data and have owners make
changes by going through the server. The server can
enforce serialization of changes, making sure that an
edited version of a file will not be accepted if it was cre-
ated starting from an outdated copy. This approach
requires that all users interact with a central server, which
may not always be easy or even possible, especially if the
users are geographically dispersed. The central server is a
single point of failure and must be maintained explicitly.

The invention of version vectors by Parker etal.
[20] enabled the construction of replicated systems with-
out the ‘‘central server’’ restriction. The most common
examples of version vector-based systems are the Ficus
[7] and Coda [14] distributed file systems. A more recent
example is the Pangaea wide-area file system [25]. Vector
time pairs offer real benefits to all these cases.

Ficus was very careful about trying to reduce net-
work bandwidth for distant replicas [10]; as shown earlier,
vector time pairs allow even more frugal bandwidth use.
Using vector time pairs would have eliminated the need
for the cumbersome distributed garbage collection algo-
rithms as well [8].

Coda distinguished between servers, which were
connected to each other via high-speed links, and clients,
which may only be intermittently connected. It used ver-
sion vectors to track changes made by servers, but treated
clients as second-class citizens to keep the number of
replicas included in the vectors small. Changes made by a
client must be shepherded by a server. This two-level
split kept the version vector algorithms efficient. Using
vector time pairs would have removed the need for this
artificial separation. Coda does not bother to implement
the distributed garbage collection algorithms. Instead it is
assumed that the central servers are connected well
enough to coordinate in a simultaneous conversation.

Because Pangaea uses version vectors, it must keep
track of exactly which replicas are in the system. If a
replica has not been seen for 30 days, the replica is ejected
by agreement among the remaining replicas. Such a com-
plicated protocol would not be necessary if Pangaea used
the vector time pair algorithms, which are not sensitive to
whether a replica is currently active in the system.
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Bayou [21] and Ivy [18] are distributed systems
designed to enable collaboration among many partici-
pants. The details of data distribution are quite different,
but the synchronization structure is very similar. Replicas
make changes in a private log, which is then shared with
the rest of the system. Each replica keeps a single version
vector tracking how much of each other replica’s log it has
received. Because the log structure imposes a linear
ordering on events at a given replica, the version vector is
really being used as a synchronization time, yielding many
of the benefits and clarity of vector time pairs. The log
structure imposes a restriction too: the synchronization
must be totally ordered. It is not possible for a replica to
pick up another replica’s change 5 without changes 1
through 4. If these changes involve different objects,
selective application of the changes might well be desir-
able. Using vector time pairs directly would allow Bayou
and Ivy to synchronize individual objects independently.
This is more of a benefit in Ivy, which implements a dis-
tributed file system, than in Bayou, which is intended as a
more general framework and might not have a concept of
individual objects, depending on the application.

Fluid replication [3] proposes to create well-
connected replicas called WayStations on demand in order
to help the performance of less well-connected replicas
such as handheld wireless devices. Vector time pairs are a
natural match for a fluid replication, since they easily tol-
erate replicas being created and destroyed dynamically.
Depending on the level of consistency desired, fluid repli-
cation uses version vectors or logging. Fluid replication’s
least common ancestor (LCA) algorithm is a heuristic
attempting to construct small sets of relevant changes to
propagate to less well-connected replica. Vector time
pairs should be applicable in the situations that LCA is
intended to cover. A detailed comparison of how vector
time pairs perform relative to LCA is future work.

User-level synchronizers like Rumor [9] and Unison
[1] were discussed in detail earlier. Using vector time
pairs enables the various features present in Tra but absent
in these.

As mentioned earlier, optimistic replication plays an
important role in the use of PDAs and other mobile
devices. The SyncML [27] initiative is but one example
of the current industry fervor for synchronization. Past
examples have included Microsoft Briefcase and the vari-
ous HotSync PDA programs. The SyncML proposal
defers most of the hard bookkeeping by using a central
server that tracks the movement of the replicated data.
Using the central server makes the bookkeeping very easy
for the mobile devices, avoiding the problems that plague
version vectors. Using vector time pairs would be another
way to avoid these problems, without reintroducing the
problems associated with a central server.

7. Future work

In our minds, the most significant shortcoming of
this work is the lack of a formal proof that the algorithms
are correct. We have tested our implementations on a
large test suite that includes all the examples in this paper.
It would be quite another thing to prove that the algo-
rithms given here behave exactly as desired. As men-
tioned in section 2, even formalizing the problem state-
ment is difficult, and a number of mostly equivalent for-
malizations have been proposed. The only synchronizer
we know of with a given proof of correctness is Unison,
but Unison’s approach is restricted to two replicas, which
significantly simplifies both their algorithms and their
proofs. Precise formalization of synchronization is still an
important open problem.

The space required to store the modification times
for directories is higher than we would like. We are
exploring ways to reduce this storage safely, but without
global knowledge of the system.

The command-line interface to tra is functional,
but a richer interface would be convenient for interactive
use. We have only just begun to consider how to build a
graphical interface, which would allow fine control over
the synchronization process. Although the Unison inter-
face is definitely a step in the right direction, we believe
that the question of what makes a good interface to a file
synchronizer is still open.

We plan to collect traces of synchronization activity
by Tra users in order to better understand what people
expect from file synchronizers and to check whether our
expected usage patterns (in particular, the regular total
synchronizations) hold in practice. Such traces would also
be useful for future algorithm designers.

8. Conclusions

As mobile devices proliferate, optimistic replication
will serve an increasingly central role in our day-to-day
computing environments. We have presented vector time
pairs as a new method for tracking optimistically repli-
cated data. The fundamental insight is that synchroniza-
tion history should be maintained separately from modifi-
cation history. This separation yields algorithms signifi-
cantly simpler than those used with traditional version
vectors, with significant improvements in functionality.
We hope that the use of vector time pairs will make the
optimistically replicated systems of the future easier to
build, to manage, and to use.

We have also described an implementation of vector
time pairs in a real application, a user-level file system
synchronizer. The Tra source code and simulator are
available via anonymous CVS and a web interface. See

url removed for anonymity
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for more information.
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