FAB: Building Distributed Enterprise Disk Arrays from
Commodity Components

Yasushi Saito, Svend Frglund, Alistair Veitch, Arif Merchant, Susan Spence

Hewlett-Packard Laboratories
firstname.lastname@hp.com

ABSTRACT redundant and hot swappable hardware components. They do not

This paper describes the design, implementation, and evaluation ofScale weII,_ because there is a high up-front cost for even a mini-
a Federated Array of Bricks (FAB), a distributed disk array that pro- .mally.conflgured array, and a single system can only grow to a I!m-
vides the reliability of traditional enterprise arrays with lower cost ited size. The$e limitations force manufa}cturers _to_develop mL_jltlpIe
and better scalability. FAB is built from a collectionlwficks, small products for dn‘_ferent SVStem scales, which m.ultlplles. the engineer-
storage appliances containing commodity disks, CPU, NVRAM, Nd efforts required. These issues, coupled with relatively low man-
and network interface cards. FAB deploys a new majority-voting- ufacturlr!g_ volumes, drive up their cos_t—hlgh-end arrays retgnl for
based algorithm to replicate or erasure-code logical blocks acrossmany millions of dollars, at. least .20 times more than the price of
bricks and a reconfiguration algorithm to move data in the back- consumer-c_lass systems W'th equwalent capacity.

ground when bricks are added or decommissioned. We argue that FAB cop5|sts ofacollegtlon_dfrlcks—small rack-mounted com-
voting is practical and necessary for reliable, high-throughput stor- PUters builtfrom commodity disks, CPU, and NVRAM—connected
age systems such as FAB. We have implemented a FAB prototypebY standard networks_ such as Ethernet. Bricks autonomously dis-
on a 22-node Linux cluster. This prototype sustains 85MB/second trlbgte data and fun.ctlonallty across the system to present a hlghly
of throughput for a database workload, and 270MB/second for a avallablt_a set of logical volumes to clients through stand_ard disk-
bulk-read workload. In addition, it can outperform traditional master-2C¢€SS interfaces such as iSCSI| [32]. FAB can scale incremen-
slave replication through performance decoupling and can handle @y, starting from just a few bricks and adding more bricks as

brick failures and recoveries smoothly without disturbing client re- demand grows, up to several hundred brlgks. It is als_o cheapgr
than traditional arrays: due to the economies of scale inherent in

quests. high-volume production, a brick with 12 SATA disks and 1GB of

. . . NVRAM can be built for less than $2000, with a total system cost
Categories and Subject Descriptors of about 20% to 80% of traditional arrays, even with three-way
D.4.5 [Software]: Operating systems-Reliability; C.5.5 [Computer replication.
system implementatior}: Servers; H.3.4 |hformation storage Commodity hardware is, of course, far less reliable than its en-
and retrieval]: Systems and softwareBistributed systems terprise counterparts. Using the reliability figures reported in [4,

3], we expect the mean time between failures of a typical network
switch to be 4 years, and that of a typical brick to be 4 to 30 years,

General Terms depending on the quality of disks and the internal disk organiza-

Algorithms, Management, Performance, Reliability tion (e.g., RAID-5 is more reliable than RAID-0). FAB inevitably
faces frequent changes to the system, including brick failures or
Keywords additions, and network partitioning.

_ o _) The FAB project tries to achieve two goals in such environments.

Storage, disk array, replication, erasure coding, voting, consensus First, FAB should providecontinuous servigemasking failures
transparently and ensuring stable performance over diverse work-

1. INTRODUCTION loads. Second, it should enstumgh reliability, comparable to that
A Federated Array of Brick¢FAB) is a distributed disk array of today’s high-end disk arrays: 10,000+ mean years before the first

- , ; ; data loss, tolerating the failures of disks, CPUs, or networks.
that provides reliable accesses to logical volumes using only com-

modity hardware. It solves the two problems, scalability and cost The key idea behind FAB to achieve these goals is replication
y N Vo pro! ! y " and erasure coding byoting Acting on behalf of a client, a read
associated with traditional monolithic disk arrays.

- . . : . . or write request coordinator communicates with a subset (quorum
Traditional disk arrays drive collections of disks using central- q @)

ized controllers. They achieve reliability via highly customized Of.b”CkS that store the _d_atg. Voting allgws FAB to_tolerate failed

’ ' bricks and network partitioning safely without blocking. It also en-
ablesperformance decouplinfp4]—tolerating overloaded bricks
Permission to make digital or hard copies of all or part of this work for by simply ignoring them, as long as others are responsive. This is
personal or classroom use is granted without fee provided that copies areespecially effective in systems like FAB, in which brick response
not made or distributed for profit or commercial advantage and that copies times fluctuate due to the randomness inherent in disk-head mech-
bear this notice and the full citation on the first page. To copy otherwise, to anisms. \oting-based replication is not new, but it has seen little

republish, to post on servers or to redistribute to lists, requires prior specific i . .
permission and/or a fee. use in high-throughput systems, because of concerns about ineffi

ASPLOS'0Dctober 7—13, 2004, Boston, Massachusetts, USA. ciency, as reading data must involve multiple remote nddes [36]. In
Copyright 2004 ACM 1-58113-804-0/04/001(55.00.

this paper, we show that voting is indeed practical and often neces- ‘Admin frontend‘iSCSl frontend‘ "\Front—
sary for reliable, high throughput storage systems. Specifically, our @[— = = 7| 777 yend
contributions are: File/DB servers Paxos A
golume layouts Coordinator
New replication and erasure-coding algorithms: We present asyn- E [3 E Se‘l’:;’g)s. S o Core
chronous voting-based algorithms that ensure strictly lineariz- T T — v
able accesses [[I7, 2] to replicated or erasure-coded data. They * * * Storage handler ABack-
can handle any non-Byzantine failures, including brick fail- FAB bricks ' Buffer [Timest | Disk
L. . b 7 cache amps ¢* map@ end
ures, network partitioning, and slow bricks. Existing algo- | Disks =2~ v

rithms [B,[27], in contrast, not only lack erasure-coding sup-
port, but also could break consistency when a brick that coor- Figure 1: The structure of a FAB system. Bricks are connected to
dinates a request crashes in the middle. each other and to clients by commodity networks. All bricks run the

A new dynamic quorum reconfiguration algorithm: FABcanad- same set of software modules, shown in the right-hand picture. Volume
just quorum configurations dynamically, while allowing I/O layouts, seggroups, and diskmaps are on-disk data structures, normally
requests from clients to proceed unimpeded. It improves reli- cached in memory. The buffer cache and timestamp table are stored in
ability by allowing the system to tolerate more failures than in NVRAM.

a system with fixed-quorum voting, and by adding a new brick y,jerate Byzantine failures and erasure coding for long-term, space-

after another brick is decommissioned. efficient data storage. Unlike these systems, FAB is designed as a
Efficient implementation and evaluation of FAB: We presentsev- high-throughput local-area storage system. It tolerates only stop-

eral techniques that improve the efficiency of these algorithms ping failures, but it ensures consistent data accesses without chang-

and implement them in FAB. ing the clients or exploiting file-system semantics. Ling|[24] and
Huang [18] use voting to build a high-throughput storage system,
but they support only replication, with only single-client accesses,
and require a special protocol to run on each client.

We have implemented a FAB prototype on a 22-node Linux clus-
ter. As we show in Sectidnj 7, this prototype sustains 85MB/second
of throughput for a database workload, and 270MB/second for a ¢ gnsistent reconfiguration has been studied in viewstamped repli-
bulk-read workload. In addition, it can outperform traditional master-.ation [29], which uses two-phase commits to update data and Paxos [2(
slave replication through performance decoupling and can handle21] to transition views. More recently, RAMBO [27] proposed the
brick failures and recoveries smoothly without disturbing client re- 425 of concurrent active views and background state synchroniza-
quests. tion. This idea is used in FAB as well, but whereas RAMBO is

based on single register (logical block) emulation, FAB runs more
2. RELATED WORK efficient voting algorithms over multiple logical blocks.

Today's standard solution for building reliable storage systems
is centralized disk arrays employing RAID [7], such as EMC Sym- 3. OVERVIEW
metrix, Hitachi Lightning, HP EVA, and IBM ESS. To ensure re- Figure[1 shows the structure of a FAB system. FAB is a sym-
liability, these systems incorporate tightly synchronized hardware- metrically distributed system—each brick runs the same set of soft-
level redundancy at each layer of their functionality, including pro- - \are modules and manages the same types of data structures. FAB
cessing, cache, disk controllers and RAID control. As reviewed in cjients, usually file or database servers, use iSCSI [32] for reading
the previous section, this architecture limits their capacity, through- and writing logical blocks, and a proprietary protocol for adminis-
put, and availability. FAB distributes the functionality of array con- trative tasks, such as creating and deleting logical volumes. At a
trollers across bricks while maintaining the consistency semantics nigh level, a read or write request is processed as follows:
of a single disk. . . .

The idea of distributed, composable disk arrays was pioneered by 1+ The client sends an iSCSI request of the fgwwiume-id, off-

TickerTAIP [6] and Peta([22]. Petal uses a master-slave replication set, length) to acoordinator, thatis, a bri,Ck that acts as a gate-
protocol, which cannot tolerate network partitioning. In addition, way for the request. Because of FAB's symmetric structure,
it has a period 30 seconds) of unavailability during fail-over, the client can choose any brick as the coordinator to access

which can cause clients to take disruptive recovery actions, suchas 21 logical volume. Different requests, even from the same
database-log or file-system scanning. In contrast, FAB can mask client, can be coordinated by different bricks. In practice, the

failures safely and instantaneously using voting, and it supports client uses either hard-wired knowledge or a protocol such as

Reed-Solomon erasure coding in addition to replication. Recently, iISNS [33] (a name service for iSCSI) to pick a coordinator.

LeftHand Networks|[23] and IBM|[19] have proposed FAB-like 2. The coordinator finds the set of bricks that store the requested

storage systems, but no details about them have been published. blocks. These are theorage bricks for the request.
Network-attached secure disks (NASD) [13] let clients access 3. The coordinator runs the replication or erasure-coding proto-

network-attached disks directly and safely. Both FAB and NASD col against the storage bricks, passing the typteume-id,

try to build scalable distributed storage, but with different emphases: offset, length) to them.

FAB focuses on availability and reliability through redundancy, 4. Each storage brick converts the tuplelume-id, offset, length)
whereas NASD focuses on safety through access-control mecha- to physical disk offsets and accesses the re(’queste’d data
nisms. These systems complement each other. '

The ability of voting algorithms to tolerate failures or slow nodes 3.1~ Key data structures and software modules
has led to their recent adoption in storage systems. FaiSite [1] The steps described above are carried out using the following
is a distributed serverless file system that uses voting-based algokey data structures:
rithms to tolerate Byzantine failuresSelf-* is also a serverless e \olume layoumaps a logical offset to seggroupat segment
file system that uses voting-based erasure-coding algorithms [12, granularity for each volume. A segment, set to 256MB, is the
16]. OceanStore [31] is a wide-area file system that uses voting to unit of data distribution.

¢ Seggroupdescribes the layout of a segment, including the set Volume ID
of bricks that store the segment. The volume layout and seg-
groups are used in step 2 to locate the set of storage bricks for
arequest. A seggroup is also the unit of reconfiguration, as we

discuss further in Sectidg 5.
e Diskmapmaps a logical offset to the tupldisk-number, disk- Volume

offset) atpagegranularity for each logical volume. A page, set table
to 8MB, is the unit of disk allocation. Diskmap contents are

unique to each brick. Diskmaps are used in step 4.
e Timestamp tablstores timestamp information for recently mod-

ified blocks. The contents of this table are unique to each

brick. This data structure is used in steps 3 and 4 to access
replicated or erasure-coded blocks in a consistent fashion. We Diskmap
discuss FAB'’s replication and erasure-coding algorithms and table Disk map Disk
their use of timestamp tables in more detail in Sedfion 4.

0
256MB

512MB
768MB
1024MB
1280MB

Paxos-
replicated

Volume layout Seggroup

0
=
16MB
24MB
s | | Locally

4OMB | | managed

Volume

<diskID, <
offset> H

Figure 2: Example of locating a logical 1KB block at offset
768MB of a volume. The client sends a request of the form

Figure[2 shows an example of I/O request processing. Volume 8 1
(volume-id, 768MB, 1KB) to a random coordinator. In the top

layouts and seggroups are called #iebal metadata, because they

are replicated on every brick and are read by the request coordi-half of the diagram, the coordinator locates the volume layout
nator. Following the approach pioneered by Petal [22], we use from the local copy of the global metadata and finds the seg-

Paxos|[20; 21], an atomic broadcast protocol, to maintain the con- 9rouP for the offset 768MB. The seggroup shows that the data is

sistency of the global metadata across bricks. Paxos allows bricksStored on bricksB, D, and E. The coordinator then executes the
to receive exactly the same sequence of metadata updates, eveffPlication or erasure-coding protocol against bricksB, D and
when updates are issued concurrently and bricks fail and recover.E- 1N the bottom half of the diagram, each of the bricksB, D,
Thus, by letting bricks initially boot from the same (empty) global apd E consult the local diskmap to convert the offset 768MB to
metadata and use Paxos for updates, they can keep their metadaflisk addresses.
consistent. As discussed further in Secfior 5.2, FAB is designed
to withstand stale global metadata, so long as bricks eventually re-
ceive metadata updates. As such, reading global metadata is done
directly against the local copy.

These data structures are managed by software modules that are
roughly divided into three groups. THeontend receives requests 0l ‘ ‘ :
from clients (step 1). Theore contains modules needed to locate 0 5 10 15 20
logical blocks and maintain data consistency (steps 2 and 3). In par- Segment groups/brick
ticular, thecoordinator module is responsible for communicating
with the backend modules of remote bricks to access blocks con-
sistently. Thestatus monitor keeps track of the disk usage and load
of other bricks. It is used to assign less-utilized segment groups to
volumes while creating volumes (Sectjon|3.2), and to pick a brick per brick, the more evenly the extra load is spread. Creating too
in the quorum that reads data from disk (Secfior} 4.4). It currently many seggroups, however, reduces the system’s reliability, since
deploys two mechanisms. First, the status information is piggy- this increases the number of combinations of brick failures that can
backed on every message exchanged between bricks; this gives gead to data loss. Figufé 3 shows how the reliability changes with
timely view of the status of a small set of bricks. Second, we use the number of seggroups per brick. This analysis is based on a
a variation of the gossip-based failure detedtof [34] to advertise the Markov model assuming bricks with twelve 256GB SATA disks.
status to a random brick every three seconds; this gives an older,Fajlures are assumed to be independent. We assume a disk mean

90000

—o— 3-replication
-4 2,4 erasure coding
5,7 erasure coding

MTTDL(years)
w [}
o o
o o
o o
o o

Figure 3: Mean time to data loss (MTTDL) of FAB in systems
with 256 TB logical capacity.

but more comprehensive, view of the system. Finally, tingend time to failure (MTTF) of 57 years, based on manufacturers’ spec-
modules are responsible for managing and accessing NVRAM andifications and a brick (enclosure) MTTF of 30 years, based on data
physical disks (step 4). from [4]. The time to repair a failure depends on the failure type

. and is based on the time required to copy the data to spare space —
3.2 Data IayOUt and load balancmg we assume that spare space is always available. Based on this, we
All the segments assigned to a seggroup must use the same repjck an average of four seggroups per brick because this meets our
dundancy policy: replication of the same degree or erasure codinggoal of a 10,000 year MTTDL, while still allowing the load to be
with the same layout. FAB's policy is to create, for each redun- spread evenly.
dancy policy, an average of four seggroups that contain a specific The choice of segment and page sizes involves several trade-offs.
brick. Logical volume segments are assigned to seggroups semi-A |arger segment size reduces the global-metadata management
randomly when the volume is created, favoring seggroups contain- gverhead, but at the cost of less storage allocation freedom, because
ing bricks with less utilized disks (the status monitor is consulted bricks in a seggroup must store all its Segments_ The page is cho-
for this purpose). The assignment of physical disk blocks to pages sen to be smaller than the segment to reduce the storage waste for
(i.e., diskmap) is done randomly by each brick when the page is erasure-coded volumes (Sectjon|4.2), or for logical volumes whose
written for the first time. size is not segment-aligned. Too small a page size, however, could
The choice of number of seggroups per brick reveals a tension also hurt performance by increasing disk-head movement. We find
between load balancing and reliability. After a brioKails, the that the current setting of 256MB segments and 8MB pages offers
“read” requests normally handled byare now served by the other 3 good balance for the next few years—even with bricks with 10TB
bricks in the seggroups thabelongs to. Thus, the more seggroups

raw capacity and one thousand 1TB logical volumes in the system, // /O coordinator code.
proc write(val)

the size of the global metadata and diskmaps would be only SMB ™ s NewTimestamp()
and 10MB, respectively. send [Order, {}, ts] to bricks in the seggroup
if a majority reply “yes”
send [Write, val, ts] to bricks in the seggroup

4. VOTING-BASED REPLICATION AND ERA- if a majority reply “yes” return OK
SURE CODING return ABORTED

proc read()
FAB provides two redundancy mechanisms, replication and erasuresend [Read] to bricks in the seggroup

coding. Both are based on the idea of voting: each request makes if amajority reply “yes” and all timestamps are equal
progress after receiving replies from a (random) quorum of storage return the val in a reply. . .
bricks. Our protocols require no persistent state on the request co- S < NewTimestamp() // Slow “recover” path starts

. . - . send [Order, “all”, ts] to bricks in the seggroup
ordinator. This feature allows any brick to act as a coordinator and majority reply “yes”

helps FAB become truly decentralized without changing clients. val « the value with highest valTs from replies
Sectior 4.1 describes our basic replication protocol for a single send [Write, val, ts] to bricks in the seggroup
logical block, and Sectiop 4.2 describes how it can be extended if a majority reply “yes” return val

for erasure coding. Multi-block requests are logically handled by ~ return ABORTED

runnllng multiple instances of these alg.orlthms n parallel, but in /I Storage handler code. Variable val stores the block contents.
practice, we batch and run them as efficiently as single-block re- 0" e ceive [Read]

quests. We discuss this and other implementation-related issues in - status « (valTs > ordTs)

later sections. reply [status, valTs, val]
when Receive [Order, targets, ts]
4.1 Rep”cation status « (ts > max(valTs, ordTs))

. if status ordTs « ts
The task of a request coordinator is straightforward in theory: targets = “all” or this block € targets reply [valTs, val, status]

when writing, it generates a new unique timestamp and writes the else reply [valTs, status]

new block value and timestamp to a majority of storage bricks; when Receive [Write, newVal, ts]
when reading, it reads from a majority and returns the value with ~ status — (ts > valTs and ts > ordTs)
the newest timestamp. The challenge lies in the handling of the If Status val < newVal; valTs —ts
failure of the participants in the middle of a “write” request: the 'SPV [status]

new value may end up on only a minority of bricks. A storage
system must ensugrict linearizability [2}, [17]—it must present a
single global ordering of (either successful or failed) 1/0 requests,
even when they are coordinated by different bricks. Put another
way, after a “write” coordinator fails, future “read” requests to the
same block must all return the old block value or all return the new
value, until the block is overwritten by a newer “write” request. clocks with sub-millisecond precision [28,]10]. Being able to abort
Prior approaches, e.g., Gifford's use of two-phase commits [14] requests, however, offers two benefits. First, it allows for an effi-
cannot ensure a quick fail-over, and Ling et al.'s use of end-to-end cient protocol—a “read” request can complete in a single round as
consistency checking [24] conflicts with our goal of leaving the opposed to two in previous algorithmg [5, 27], skipping the round
client interface (iISCSI) unchanged. to discover the latest timestamp. Second, abortion enalries

FAB takes an alternative approach, performing recovery lazily linearizability—that is, only by sometimes aborting requests can
when a client tries to read the block after an incomplete write. Fig- an algorithm properly linearize requests whose coordinators could
ure[4 shows the pseudocode of FAB’s algorithm. Each replicated crash in the middle. A theoretical treatment of this issue appears in
block keeps two persistent timestampaiTs is the timestamp of separate papers [11, 2].
the block currently stored, anddTs is the timestamp of the newest .
ongoing “write” request. An incomplete “write” request is indi- 4.2 FErasure COdmg
cated byordTs > valTs on some brick. A “write” runs in two FAB also supports generim,n Reed-Solomon erasure coding.
phases. First, in th®rder phase, the replicas update theitiTs Reed-Solomon codes have two characteristics. First, they gener-
to indicate a new ongoing update and ensure that no request withaten — m parity blocks out ofm data blocks, and can reconstruct
an older timestamp is accepted. In the secaNdte, phase, the the original data blocks from any out of n blocks. Second, they
replicas update the actual disk block andTs. A “read” request provide a simple function, which we cdlelta, that enables in-
usually runs in one phase, but takes two additional phases whencremental update of parity blocks [30]. Using this function, when
it detects an incomplete past “write”—the coordinator first discov- writing to a logical blockX, the new value of any parity block can
ers the value with the newest timestamp from a majority, and then be computed byor(old-parity, Delta(old-x, new-x)), whereold-
writes that value back to a majority with a timestamp greater than parity is the old parity block value, andd-x andnew-x are the old
that of any previous writes. In this protocol, a “write” request still and new values of blockK.
tries to write toall the bricks in the seggroup; the coordinator just Figure[T shows our data-access algorithm for erasure-coded vol-
does not wait for all the replies. Thus, a read-recovery phase usu-umes. Supporting erasure-coded data requires three key changes
ally happens only when there is an actual failure. Figjlire 5 shows to the basic replication protocol: segment layout, quorum size, and
an example of I/Os using this algorithm. update logging.

One unusual feature of our protocol is that a request may abort We currently use the entire segment as the erasure-code chunk,
when it encounters a concurrent request with a newer timestamp. Inas shown in Figurfg]6, unlike typical RAID systems that use smaller
this case it is up to the client or the coordinator to retry. In practice, chunk sizes such as 64KB. We chose this layout because it lets a
abortion is rare, given that protocols such as NTP can synchronizelarge logical sequential request be translated into a large sequential

Figure 4: FAB's replication algorithm for a single logical block.
The function NewTimestamp generates a locally monotoni-
cally increasing timestamp by combining the real-time clock
value and the brick ID (used as a tie-breaker).

Failure-free Recovery from
x T execution— " 3 coordinator failure

ReplicasI Y /4 nte — A\ % R -
N\ Order o .. [\ [\ J\
Z {) rite
Coord- I c,ZtT “?/lad AT g
inators - ¢ - L. /L)
’) @ 5 ©

(D 2
Timeline ——»

Figure 5: A logical block is replicated on bricks X,Y, and Z. In steps
(1) and (2), coordinatorC; writes to the block in two rounds. Coordina-
tor C, reads from {Y,Z}, discovers that the timestamps are consistent
and finishes (in practice C; reads the block value from only one replica;
Sectior{4.3). Steps (4) to (8) show why a write needs two rounds, tries
to write, but crashes after sendingWrite to only Y. Later, while trying

to read, C; discovers the partial write by observing valTs<ordTs on
Z. Cp discovers the newest value in step (7) and writes it back to a
majority (in fact, all) in step (8), so that future requests will read the
same value. In a different scenarioC, could contact only{X,Z} in step
(6), and C, would find and write back the old value. This causes no
problem—when a write fails, the client cannot assume its outcome.

seggroup
0
0

D, {1 [j-1

128MB b ‘ dz P strip j
2 D P
256MB 128MBl 2 ' .
logical volum data brick 1 data brick 2 parity brick

Figure 6: An example of 2,3 erasure-coded segment. An
m, n erasure-coding scheme splits one segment intoequal-size
chunks (D1,D»), and addsm— n parity chunks. A horizontal,
block-size-height slice is called a “strip”. Bricks in the seggroup
maintain the set of timestamps and the update log for each
strip. In this example, with a 1KB logical block, the 3rd strip
of the segment will occupy regions{(2KB, 3KB), (131074KB,
131075KB)} of the segment.

disk I/O at each brick. The downside is that it may abort writes

spuriously, when two blocks that happen to be in the same strip are

/'O coordinator code. “idx” is the block number within the strip.
proc write(val, idx)
ts — NewTimestamp()
send [Order, {idx}, ts] to bricks in the seggroup
if an m-quorum reply “yes” and idx’th brick replies with oldval
delta < Delta(oldval, val, idx)
send [Write-EC, val, ts] to the idx’th brick.
send [Write-EC, NULL, ts] to other data bricks.
send [Write-EC, delta, ts] to parity bricks
if an m-quorum reply “yes”
send [Commit, ts] to bricks in the seggroup
return OK
return ABORTED
proc read(idx)
send [Read] to bricks in the seggroup
if an m-quorum and idx reply “yes” and all timestamps are equal
return the val returned by idx’th brick.
ts — NewTimestamp() // Slow recovery path begins
send [Order&ReadLog, ts] to bricks in the seggroup
ts’ «— Pick the largest timestamp that appears in at least mreplies.
strip — Reconstruct the original strip for ts’
send [Write, strip[i], ts] to i'th brick, for each i in the seggroup
if an m-quorum returns “yes”
send [Commit, ts] to bricks in the seggroup
return strip[idx]
return ABORTED

/I Storage handler code
when Receive [Write-EC, newval, ts]
status < (ts > valTs and ts > ordTs)
if status
if this brick is for parity, add [xor(newval, val), ts] to the log.
elseif newval # NULL, add [newval, ts] to the log.
else add [val, ts] to the log
reply status
when Receive [Order&ReadLog, ts]
status « (ts > max(valTs, ordTs))
reply [status, all the log entries]
when Receive [Commit, ts]
Wait for a while to reject requests with stale timestamps.
if there is a log entry for ts
val < the associated log value.
Remove log entries with timestamps ts or smaller.

updated concurrently. With a database transaction workload (Sec-Figure 7: Erasure coding algorithm for a single strip. Pro-

tion[7.3), however, the conflict rate is measured to<b@.001%,
and we consider that the benefits outweigh the downsides.

cedure “write” is invoked by the 1/O coordinator to write to
the idx'th block in the strip. Procedure “read” reads from the

As in replication, each request contacts a subset of the bricks thatidx’th block in the strip.

store the segment. However, with n erasure coding, a coordina-
tor must collect replies froom+ [(n—m)/2] bricks—that is, the
intersection of any two quorums must contain at leabticks—to

index. Thus, logging does not create any additional disk-1/0 or
memory-copying traffic in the common case when no brick fails

be able to reconstruct the strip value during a future “read”. We call during request processing.

this quorum system am-quorum. For instance, thex-quorum size
is 3 for a 24 erasure code, and 8 for al® erasure code.

The final change involves the need for strip recovery. Suppose

that a “write” coordinator crashes after writing the new value to

less tharm bricks in the second round. The subsequent “read” re-

4.3 Reducing the overhead of timestamp man-
agement
One challenge of FAB is the timestamp management overhead:
for every 1 TB of data, with 24 byte timestamps recorded for every

quest must recover the old value, which might become impossible 512B block, 48 GB of space could be required for timestamps. This

if the “write” request simply overwrote the blocks andnif< 2m
(which is a rather common setting). We solve this situatiomy
date logging— a storage brick merely logs the new value in the sec-
ond round of the “write”. A read request, when recovering the old
value, scans the log on amquorum of bricks and finds the newest
strip value that can be fully reconstructed. The “write” coordina-

information must be kept persistently, yet this amount of NVRAM
is infeasible. We employ two techniques to reduce the overhead of
timestamp management.

First, we observe that timestamps are used only to disambiguate
concurrent updates and to recover from previous failures. Thus,
when all replicas of a logical block are functional, timestamps can

tor, after it replies to the client, instructs the bricks to overwrite the be discarded after all of them have acknowledged an update. Replies
old block value, and thus compress their log, in an asynchronousto the client are made as soon as a majority of the replicas have ac-
Commit phase. In practice, the log is implemented in each brick’s knowledged an update. The coordinator, in the background, sends
NVRAM cache, and the third round—replacing the block value aGC (garbage collect) message to bricks only adfiebricks in the

with the log entry—is performed simply by modifying the cache seggroup reply; for erasure-coded volumes, this message is piggy-

backed onto th€ommit message when possible. Each recipient Quorume ¢ {?él,sécl)’ (B.C) {?éC}}, © {F{,B,é} sl
of this message removes the corresponding entry in the timestamp ' ! : : ! !
(1) A terminally (7) B recovers, A

table after waiting for a short period (10 seconds), just long enough F crashes F joins / \

to detect out-of-order requests with older timestamps. This period A I/\\x [\ (4) B crashes
is conservatively chosen to be larger than the maximum clock skew B
plus the maximum possible scheduling delay on any bfick [25]. C l

Another improvement can be made by observing that a single |
“write” request usually updates multiple blocks, and that each of E

VIV R

the blocks affected will have the same timestamp. We thus organize 3 \Viad v 1
i i i Kt 3) Sync: Ens Vo teea H
the timestamp table as an ordered tree, with a set of timestamps kept (2) Dymamic ih?ﬂh byl?fc}s written (5) Dynamic(6) no sync (8) Ensure that values
ing i 1d view ¢ i ded; ri in the old vi
for a range of blocks rather than per-block. When a new request veting er (my votine o e TR Oy

arrives for a part of an existing range in the timestamp table, we
then split the range into two (or three) and replace only the part

overwritten by the new request. _ Figure 8: Reconfiguration example. This seggroup initially
The combination of these techniques can reduce the tlmestamprep”Cates data on bricksA, B,C, with witnessesD, E participat-
overhead substantially. In the non-failure case, a brick needs 0 ing only in view transition. ‘Atthe top, the set of active quorums
keep timestamps only for blocks that are actively updated. Steady- ¢, med at each moment is shown. Afterd and B crash,C is still
state size of the timestamp table per brick is measured to be 10KB, 5\ 10 form a singleton view with help from the witnesses. Af-
which can easily be keptin NVRAM. When a brick fails, the times- o1 g recovers andF is added, they ensure that they store values

tamps need to be kept until the reconfiguration protocol removes it | ritten to the seggroup before removing the old view{C}.
from the segment group usually in less than an hour (Seftion 5).

However, simulation results with real workloads show that the time- seggroup form aiew; until the view changes, read and write re-
stamp-table size increases by at most 4MB per brick per hour evenquests that happen in the view must contactraquorum of the
after brick failure [10]. It is extremely unlikely that the number of bricks in the view. Figur§]8 overviews the reconfiguration proto-

timestamps will exceed what a brick can store in memory. col. First, a view-agreement protocol lets bricks agree on a new
. .. . view after brick failure or addition (step (2)). A new view is super-
4.4 Improving the efficiency of voting posed on the existing view (step (3)), forcing all new requests to

One of the criticisms of majority voting is its inefficiency, be- collect replies from am-quorum of each of the old and new views.
cause “read” requests must contact multiple remote nddes [36]. The old view is removed after ensuring that values written in the
This problem, however, does not apply to FAB for two reasons. old view are also written to am-quorum of the bricks in the new

First, we apply an “optimistic read” technique for the common view (state synchronizatigrsteps (4) and (5)). In the rare event
case scenario of reading from a logical block that is already con- in which more than two views are formed in a short period, they
sistent. Here, the coordinator reads the actual block contesifs (are removed in the FIFO order. By decoupling view formation and
from an idle, live replica and reads only timestamps from others state synchronization from foreground request processing, FAB al-
in the quorum. This technique, in effect, reduces the number of lows client requests to be processed undisturbed. The following
disk accesses to one per “read” request, as timestamps are kept isections describe these steps in more detail.

NVRAM. Second, FAB is naturally a disk-1/O-bound system; the
CPU spends much of the time waiting for disk 1/Os to complete, 9-1 View agreement via dynamic voting

so the CPU overhead of timestamp processing does not slow the FAB'’s view agreement protocol lets bricks in a seggroup agree

system down. on a single sequence of primary views; i.e., it ensures that disjoint,
dli di fail concurrent views (a “split-brain” situation) never happen. We use
4.5 Han Ing coordinator fallures dynamic voting [21ﬁ|—a protocol similar to Paxos [20, 21], but

When a coordinator fails, it is up to the client to connect to optimized for view agreement—for this purpose.
a different coordinator and retry. Most enterprise-class storage The participants of the dynamic voting protocol are the set of
clients already have such a fail-over capability. Moreover, because bricks that store blocks in the seggroup, plus at least two additional
of FAB's strict linearizability guarantee, a client can fail over as witness bricks that participate only in the view-agreement proto-
quickly as it wishes—in fact, it allows a single client to use multi- col (witnesses are chosen randomly when the seggroup is created).

ple coordinators concurrently, e.g., in a round-robin fashion. Witnesses allow the seggroup to transition views safely, in partic-
ular when there are only two storage bricks in the view. We use

5. RECONFIGURATION the phraseote view to refer to this extended set of bricks to distin-
guish them from aiiew, which is a subset that contains only storage

FAB’s reconfiguration protocol changes the quorum configura-
ion of ment gr Lt i for mpl hen a brick - . . .
tion of segment groups. It is activated, for example, when a bric This protocol consists of three phases. First, a brick that de-

failure, recovery, decommissioning, or addition is detected. This tects the failure or recovery of another brick becomes a leader and
protocol and the data-access protocol complement each other—Com tes a new “candi da)t/e” vote view. EAB uses a three-round
the data-access protocol enables transparent masking of failures pu . u u

or slow bricks, whereas the reconfiguration protocol enables long- g}teeTnba(at{\?:;p grotocgilr \)?i]sger?::riselgtssmﬂizlg glesvg \tl)lgvtljgéjcljd('ll}r/;eblrjést
term improvement of the system’s reliability by allowing the sys- f the prot ’ llg.'np res that th nciid te view indeed 'n)
tem to tolerate more failures than would otherwise be possible us- ot the protocol ensures that the ca ate vie eed ensures a

: ' : : lobal total order. This is done by having each brick keep the list
ing a fixed-quorum algorithm. For example, FigQife 8 shows how a 9 . .

3-way replicated seggroup can handle two failures over time using of ambiguous views thal are atempted, but not yet f_uIIy for_med. .
the reconfiguration protocol. In the second phase, the leader proposes the candidate view to its

This protocol runs independently for each seggroup in the sys- 1Caution: The dynamic voting protocol is unrelated to FAB’s
tem. The list of live bricks agreed upon by the members of the voting-based data access protocols.

bricks.

- . PR . proc synchronize(sgid, newView, oldView)
members. A recipient accepts the view only if it is a majority of the blocks < findBlocksInTimestampTable(sgid)

current view as WeII_ as eagh of the ambig_uous vieyvs. _The recipient f5reach block in blocks

also adds the candidate view to the ambiguous-view list. Upon re- send [SyncPoll, block] to bricks in oldView
ceiving acceptance from all bricks in the candidate view, the leader Wait until an m-quorum in the oldView reply
sends another message to let them update their current view and ~ maxValTs, maxVal « Pick the maximum valTs
empty the ambiguous-views lists. When the leader or any other and corresponding value from the replies
participant dies during this process, another brick becomes a leader ~ MaxOrdTs «— Pick the maximum ordTs

d h | from the replies.
and re-runs the protocol. send [SyncWrite, block, maxValTs, maxOrdTs, maxVal]

. . . to bricks in newView

5.2 Logical-block synchronization Wait until an m-quorum in newView reply.

Just forming a new view is not sufficient to ensure consistent Proc findBlocksinTimestampTable(sgid, oldView)
accesses to volumes. Before removing the old view, bricks must S€nd [FindBlocks, sgid] to bricks in oldView

L. . - Wait until an m-quorum in the oldView reply

perform state synchror.uzanon. Congder a seggroup repllcqted on return the union of all blocks in the replies
five bricks,b1 to bs (witnesses are immaterial in this scenario). The
initial view contains all five bricks. Write reque®f completes, when Receive [SyncPoll, block]
storing the value on bricKss, bs andbs. Bricks b, andbs then fail return [valTs, ordTs, val] for the block
s|mu|taneously, and a new V|e?b17 b27 b3} is formed. Here’ the When Receive [SynCWrite, newValTs, newVal, neWOrdTS]
value of W must be written to at least a majority of the new view !; ”ew\?rﬁ_TS > or|<_1rTsﬂ:hen ordTs « newOrdTs
before the old view is disca_rded. Otherwise, a read request might ! ngrlse?_igw\\//iﬁz en
contact onlyb; andb, and misdn. val < newVval

Figure9 shows the basic state synchronization algorithm (due to when Receive [FindBlocks, sgid|]
space constraints, we show it only for replicated volumes). This return block numbers in the timestamp table for seggroup sgid.
protocol resembles “recovery read” that runs after an incomplete
write is found (Figurg 4), with one difference: it leavesiTs un-) o))
changed in the first phase, because this operation itself need not bd&igure 9: State synchronization after a view change. This pro-
linearized. This change also avoids aborting new I/0 requests by tocol runs independently for each segment group in the system.

clients. o , _ tamp table that need to be synchronized before the old view can
After the state synchronization finishes, the reconfiguration leadefya removed (called tHenust” blocks), and those blocks that could

sends out &RemoveView message to let bricks discard the old \\ait (“may” blocks). Specifically, in theFindBlocks phase in Fig-
view. When the reconfiguration leader dies during state synchro- ure[9, each brick returns a block as “must” only when the respondents-

nization, another brick will restart the _/iew-agreement protocol. gatig not a quorum of the new view. If the set is a quorum of, but not
However, the blocks already synchronized by the former leader 4, superset of the new view, then the block is returned as “may”

need not be re-synchronized again, and the total amount of SYN-(smay” block are still synchronized so that bricks can remove en-

chronization needed after a failure stays constant even when theas from the timestamp tables; Sectjor|4.3). Otherwise, the block
protocol restarts.] o , need not be synchronized at all. This technique often allows the
An I/O coordinator learns the list of active views in the seg- system to remove an old view very quickly and then synchronize

group by initially assuming that all bricks in the seggroup are alive. “may” blocks at a leisurely speed. We will examine the effect of
When a storage brick notices that the coordinator's knowledge of g technique in Sectidin 7.5.

the views is stale, it piggybacks its own view list on the reply. The
coordinator updates its active-view list transitively, until it receives 5 .4 Handling permanent changes

replies for the 1/O request from an-quorum of every view in the The mechanisms described in the previous section can also be

list. used to remove bricks permanently or add bricks to the system.
FRE : : To handle such events, the system administrator chooses a random

5.3 Str.eaml|.n|ng Syr_IChromzatlon brick as the reconfiguration leader and informs it that a failed brick

~ The basic algorithm described so far can, in fact, be vastly op- pas no hope of recovering. For each affected seggroup, the leader

timized in many of the common situations. We describe two tech- s the dynamic voting protocol and creates a new view that ex-

niques used in FAB. cludes the dead brick and adds a new brick. After the old view
. . is removed, the leader issues a Paxos update to change the seg-

5.3.1 Exploiting the quorum containment property group entry of the global metadata. The newly added brick per-

Quorum containmenhappens when every quorum in the old forms the whole-seggroup synchronization, copying every block,
view is a superset of another quorum in the new view. We can not just those in the timestamp tables.
skip block synchronization altogether if this condition is satisfied.

This happens, in particular, when a brick fails in a two-brick view,
s xermpiiied in Step (6) of Figdb 8. 6. CHOOSING THE RIGHT REDUNDANCY

_ _ _ SCHEMES
5.3.2 Embedding the respondents in the timestamp The main trade-offs between replication and erasure-coding in-
table volve reliability, capacity efficiency, and performance. Figurg 10

We piggyback additional information on the optional third back- compares the expected mean-time to data loss (MTTDL) of a clus-
ground phase of the “write” request (Sec{ion 4.3) to let each storage ter composed of bricks with 3TB capacity each. In order to achieve
brick remember the set of bricks that have successfully executedour goal of 10,000 years MTTDL, we need at least 3 bricks per
the secondNrrite phase. This set is stored in the timestamp table, logical block using replication. The primary reasons the system re-
in-line with the timestamps for the block. quires such high a degree of replication are the use of failure-prone

This information can be used to distinguish blocks in the times- commodity componentg [4] 3], and the size of the system. A FAB

— 1E+06 for FAB data. Up to 22 machines are used as FAB bricks, and an
[4 \+2-replication ——3-replication -A-2,4 erasure coding\

S 1E+05 % additional 7 machines are used to generate workloads.
= 1E+04 . .
2 e M 7.2 Application performance

= 1E+02 ‘ We first examine FAB’s baseline performance by running ap-
0 256 768 1024 plications on a single client on seven different storage platforms.
A run of the benchmark consists of three phases: (1) “untar” the
Linux 2.6.1 source code, 177MB in size, to a target (ext3) file sys-
tem [bulk write]; (2) “tar” the files back to the local file system
[bulk read]; and (3) compile Linux on the target file system [
mix of computation, reads and writes]. To exclude the effect of
the client-side buffer cache, we unmounted the target volume after
each step (the unmount latency is included in the numbers).
Table] shows the results. Overall, the performance of FAB with
3-way replication is comparable with iSCSI+raw disk, proving that
system with a 256TB logical capacity can have over 100 bricks, FAB’s extra protocol processing adds only a marginal overhead to
and the number of combinations of brick failures that can lead to end-to-end performance. Erasure coded volumes are slower than
data loss increases with the number of bricks. replication for the reasons discussed in Sedtion 6. The 2,4 code is
Erasure coding can gain higher capacity efficiency than repli- slower than the 4,5 code because of the cost of erasure encoding
cation, since am, n erasure coding provides reliability similar to and decoding: whereas the 4,5 (i.e., RAID-5) code is a simple bit-
(n—m+ 1)-way replication. For example, a system based gh 2 wise XOR, the 2,4 code involves GEj2arithmetic that requires
erasure coding provides similar reliability to 3-way replication, but multiple table lookups for each byte. On our hardware, encoding
uses the same raw capacity as 2-way replication. The capacity ef-or decoding 1KB of 24 erasure-coded blocks consumea$0f
ficiency of erasure-coding-based systems comes at some cost ifCPU time. Bulk reading (tar) over iSCSI is significantly slower
performance for four main reasons. First, Reed-Solomon encodingthan local disks. We believe that this is because the iSCSI client
and decoding itself consumes CPU cycles. Second, there are feweon Linux (we use the Cisco iSCSI initiator) does not prefetch data
disk spindles per logical capacity. Third, a small (strip) write en- aggressively enough to keep reading disks sequentially.
genders th— m+ 1) disk I/Os inm, n erasure coding, as opposed

512
Logical capacity (TB)

Figure 10: Mean time to first data loss in storage systems us-
ing 2-way replication, 3-way replication and 2,4 erasure coding.
With 2-way replication, MTTDL is adequate for very small sys-
tems but drops rapidly as system size grows. 3-way replication
and 2,4 erasure coding have similar MTTDL (the lines are su-
perposed). These provide adequate reliability for commercial
use.

to (n— m+1) I/Os for the comparablegn— m+ 1)-way replication. Untar Tar Compile
Fourth, each request must collect replies fromnaguorum, and Local disk 21.76 14.80 318.9
the latency is determined by the slowest bricks in the quorum. We Local RAID 1 22.32 1464 319.2
will quantify the erasure-coding overhead in the next section. iISCSI+raw disk 2421 2432 3239
FAB (3way repl.) 2157 24.61 316.0
FAB (2,4 erasure code) 38.22 27.81 3220
7. EVA'TUATION . . FAB (4,5 erasure code) 33.33 26.22 3195
We have implemented FAB on Linux. The prototype consists FAB (3way repl., no cache) 28.34 26.13 327.0

of 80,000 lines of C++ code, of which 25,000 lines are for the
core replication, erasure coding, and reconfiguration protocols. The Tapje 1: End-to-end latency of application programs. The
global metadata and diskmap tables are implemented as in-memory,ymbers are an average over three runs. “Local disk”
tables backed up by Berkeley DB. We emulate NVRAM using @ ang “ ocal RAID-1" use disks locally attached to the client.
memory-mapped file. This simulated NVRAM is used for two pur- - «scs|+raw disk” uses a remote iSCSI server accessing a local
poses: the timestamp table (Secfign 4), and the write-back buffer 5, gisk. “FAB” accesses data through FAB's iISCSI gateway.

cache. The buffer cache size is set to 512MB. _“FAB (no cache)” shows FAB with its NVRAM buffer cache
FAB is a user-space single-threaded program. It uses non-blocking,neq off.

I/O (poll) and the SCSI-generic driver [15] to multiplex low-level
network and disk 1/0O requests. This design can control resource
usage more precisely than, say, using kernel threads. In particular,7.3 Scalability

we run a lottery scheduler [35] for disk-request queue management 1 study how FAB's throughput grows with size, we ran three

to ensure that potentially bursty state-synchronization traffic uses types of synthetic workloads, because none of the real-world appli-
only a fraction (5%) of the disk throughput. With our hardware, ca4ions that we have can exert enough stress on FAB. The work-
FAB is disk-bound; thus, ensuring fair-share accesses to disks SUf'#oad DB, modeled after SPC-1 [,simulates a database trans-
fices to ensure end-to-end fair share between different classes o

. ; . o action workload. DB uses three volumes. The first two are data
traffic. We examine the effect of this mechanism in Sedfioh 7.5. yojymes that receive uniformly random as well as database-index-

: ; accessing 4KB reads and writes. The third volume, whose size is
7.1 SyStem cpnflgurathns o) 1/3 of the other two, receives sequential log writes of size 8KB to

A cluster of PCs is used as bricks. Each machine is equipped g4kB. Overall, DB issues requests with a read:write ratio of 4:6
with two 1GHz Pentium 3 CPUZ2GB of memory, three Seagate gnd an average size of 8KB. We scaled the total logical volume
Cheetah 32GB SCSI disks (15K rpm, 3.6ms average seek time),andsjze to be 18 GB (N is the number of bricks in the cluster)—e.g.,
two Intel Gigabit Ethernet interfaces. They run Debian 3.0 with the iy 3 22_brick cluster, the two data volumes are 94GB each, and the
Linux 2.4.24 kernel. On each brick, the first 6GB of one disk is
used by the host Linux file system, and the remaining 90GB is used 3The primary difference between DB and SPC-1 is that SPC-1 de-
fines an open-queue workload with a fixed request arrival rate. DB
20nly one CPU per brick is actively used during the evaluation, changes itto runin a closed queue with zero think time to stress the
because FAB is single-threaded. system.

=< 100 <

>

25 80 221

93 60 32

30 [Ole) =164k

Sm 40 -3 g0 <-DB

e =]

F2 2 2,4 0 ~+w64k
0 T 4.5 .

Number of bricks

Figure 13: The throughput of the master slave protocol with

Figure 11: Aggregate throughput of FAB clusters with the DB 3-way replication. The FAB protocol is normalized to 1.0.

workload. “3” means three-way replication, “2,4” means 2,4
erasure coding.
1007 s

S 75

=35 = ~+R (masterslave)
ac 164k (3) g 50 e R (FAB)

58 vr64k (2,4) o s —W (FAB)

39 2164k (4,5) a 257 —W (masterslave)
£ +w64k (3)

= v-w64k (2,4) 0 ; A o o

‘ = W64k (4,5) Milliseconds

Numb1e:? of bricks

Figure 14: CDF of end-to-end request latency under high load
for the DB workload. The master-slave protocol experiences
many high-latency “write” requests.

Figure 12: Throughput of FAB with random large read/write
workload. The numbers in parentheses show the redundancy

policy.

log volume is 32GB. The other two workload§4k and w64k,
are random 64KB read and write requests over a volume of size
25NGB. The request size of 64KB is taken from SPC-2’s proposed
data mining and video-on-demand worklodds [9]. Each workload
is generated by a total of 80threads running in a closed queue
with zero think time on seven client machines.

Figured I]L anf 12 show the results. Overall, as expected, FAB'’s .
throughput scales linearly with the cluster size. The exception is /-5 Handling changes
64KB random reads, which hit a ceiling due to the capacity lim- This section studies how FAB handles changes to the system. We
its of our Ethernet switches. Erasure-coded volumes sustain muchstart a 22-brick cluster with 3-way replication, run the DB work-
lower throughput than their replicated counterparts, for the reasonsload, and artificially introduce brick failures or recoveries. Fig-

pact on the overall performance. On the other hand, for 64KB-
random-read workloads, the master-slave protocol slightly outper-
forms FAB in a large cluster due to its simplicity, although this is
offset by FAB'’s ability to read blocks from idle bricks (Sectjon]4.4).
These effects can also be observed in the latency distribution as
shown in Figurg 14.

discussed in Sectidd 6. ure[I% shows the throughput transition when one brick fails and
. recovers three minutes later. The brick failure causes a reconfig-
7.4 Performance decoupling uration protocol to run, which causes bricks in the affected seg-

This section compares our replication protocol to the master- group to scan their timestamp tables. The CPU overhead of this
slave protocol, the traditional method for replicating data across timestamp-table scan is the reason for the small drop in through-
a network. We have built a variation of FAB that runs a master- put. No state synchronization is required, however, because for
slave protocol similar to Petal’s [22]. In this protocol, the dynamic every seggroup affected by the failure, the two bricks that form
voting protocol is used to let bricks agree on the single master for the new view are already consistent. The system throughput does
each seggroup. Each I/O coordinator forwards the request to thisnot decrease noticeably during the crash period, because DB is a
master. For read requests, the master simply reads its local disk andvrite intensive workload—each remaining brick handles the same
returns the data to the coordinator. For write requests, the masteramount of write traffic per request. After the recovery, another
broadcasts the new value to the replicas in the current view, waits timestamp-table scan happens. Virtually no “must” blocks (Sec-
for the replies from all of them, and then returns control back to tion[5.3.2) will be found, however, as the “write” requests issued
the coordinator. Freed from timestamp maintenance, this protocol during the crash period to an affected seggroup will be written to
is far simpler than FAB's. the remaining two, and these two form a quorum in the new, full

Figure[I3 shows the throughput of the two systems on the 22- view. Thus, the old-view removal happens nearly instantaneously
brick cluster with 3-way replication. Interestingly, for both DB and after recovery. The synchronization of the “may” blocks, i.e., copy-
64KB-random-write workloads, FAB outperforms the master-slave ing blocks written during the crash period to the recovered block,
protocol. This is due to the performance decoupling effect of the happens slowly in the background over the next 2.5 minutes, due
voting protocols|[24]—specifically, FAB can ignore slow bricks by to the lottery scheduling. Overall, no client-visible 1/O error hap-
collecting replies only from a majority. Performance decoupling pens during the run. Note that our current client software cannot
is especially effective in a disk-bound system like FAB in which handle session termination gracefully; thus, for the experiments in
disk accesses, especially NVRAM flushing, often generate bursty this section, we set up the clients not to use failed brick(s) as 1/0
disk traffic that slows the brick down for a short period of time. coordinators.

The performance-decoupling effect is visible especially for smaller In contrast, Figuré 16 shows the same scenario, but using the
clusters, in which a single overloaded brick can have a large im- master-slave replication protocol. After the failure and recovery,

— = N e\“

he] k) X o 0\16 oV

§ § 100 OO e e 100 °
[} [0})

& 2 % m syne 03
= S 60— L write 60 &
= = | M read g
é‘ §. 40 + Error 40 g
g, g 20 20 g
= e 0

= 0 2 4 6 8_10 12 14 16 18 20 22 = 0 2 4 6 8_10 12 14 16 18 20 22

Time (minutes) Time (minutes)

Figure 17: Handling double failures in a 22-brick FAB clus-

Figure 15: A brick fails then recovers in a 22-brick FAB cluster ter. The second failure causes an /0 error on a segment group
running the 3-way quorum-based replication protocol under that contains both the failed bricks. After the new view settles,
the DB workload. FAB can mask the failure without causing these segment groups can continue handling requests with one
any /O errors. remaining brick.

— N

N N

€ 100 @ e 100 &

o c o

[0} -— LNA A o

& 80 80 § 5 o

= H sync o e 0 &

2 60 O write 60 & §100 o 2™

= Ml read & 2 go—

é 40— : + Error 40 g g 60— M sync

S 20 é 20 o bt E‘r’gg

e 0 H : - 3 40—

e

F 0 2 4 6 8_10 12 14 16 18 20 22 S 20

Time (minutes) § 0
e

Figure 16: A brick fails and then recovers in a 22-brick FAB a 0 2 4 6 8 Tir1n% (r%%utég) 16 18 20 22
cluster running the 3-way master-slave replication protocol.
The “error” marks show the number (not megabytes) of /O Figure 18: A brick fails, and five minutes later, it is declared

dead and the affected segment groups are re-balanced across

]) surviving bricks.

the throughput drops, not because of timestamp scanning but be-

cause “write” requests to seggroups that contain the failed brick ing two new mechanisms. First, it uses a voting-based protocol to

abort until the new view is formed 10 seconds later. This is evi- guarantee linearizable accesses to replicated or erasure-coded log-

dent from the “error” marks in the graph. The performance drop ical blocks. This protocol transparently masks failures, and offers

is suppressed in this graph, because our DB workload generatorbetter throughput than traditional master-slave replication by mask-

does not initiate the recovery activities, e.g., device resetting and ing temporary overload conditions. Second, FAB deploys a dy-

database log recovery, that usually happen after 1/0 failures—the hamic quorum-reconfiguration protocol to allow the system to react

clients simply retry after waiting for a second. to brick additions or decommissioning without disrupting clients.
Figure[IT shows a double-failure scenario for FAB's quorum

protocol. Two bricks fail within two minutes and then recover. Acknowledgements

After the second failure, there is a single seggroup in the system) . .

whose view size changes from two to one. This causes requests to'/e thank Marcos Aguilera, Minwen Ji, Beth Keer, Hernan Laf-

this seggroup to abort until the new view is formed (the quorum fltte_, Craig Soules, and John Wilkes for their help and input to the

size of a two-brick view is always two). Recovery causes a little Project.

more disruption, because the amount of state that needs to be syn-

chronized doubles. However, after about 5 minutes, state synchro-9, REFERENCES

nization finishes and the throughput is restored back to the original [1] Atul Adya, William J. Bolosky, Miguel Castro, Gerald

level. : -
Figure[I8 shows FAB's reaction to permanent failures. A brick ?ernwt)a;, fonnr:el\sllhal_ke?h\lphn R. Ddo;ceur, ;o\r;vHowehll,f
fails, and is declared permanently dead four minutes later. For each acob k. -orch, Marvin 1heimer, and Roger - attenhofer.
' . . :) FARSITE: Federated, available, and reliable storage for an
seggroup that includes the dead brick, another brick replaces the : letel d : nt.Eh S Ob. Sve
dead one. These newly added bricks need to copy the existing data Incomp etely trusted environment. ymp. 0N £P. SY<.
- : . . 4 ! Design and Impl. (OSDJ))pages 1-14, Boston, MA, USA,
which consumes a steady portion of the disk traffic. No I/O errors December 2002

during thi io. With DB i t full d i . — —
peer during this scenario ! runming at u? speed, as in [2] Marcos K. Aguilera and Svend Frglund. Strict linearizability

this picture, it takes about 1.5 hours to fully bring the new bricks - .
up to date. Without any foreground traffic, the disk synchronization and the power of aborting. Technical Report HPL-2003-241,
HP Labs, December 2003.

finishes after 25 minutes. o
[3] Dave Anderson, John Dykes, and Erik Riedel. More than an
interface—SCSI vs. ATA. INSENIX Conf. on File and
8. CONCLUSION Storage Technologies (FA$SPrges 245-256, San Francisco,
This paper has described the design, implementation, and eval- CA, March 2003.
uation of FAB. FAB achieves two key requirements of enterprise [4] Satoshi AsamiReducing the cost of system administration of
storage systems, stable, continuous service and high reliability, us- a disk storage system built from commodity components

errors encountered by clients.

http://research.microsoft.com/sn/Farsite/OSDI2002.pdf
http://research.microsoft.com/sn/Farsite/OSDI2002.pdf
http://www.usenix.org/publications/library/proceedings/osdi02
http://www.usenix.org/publications/library/proceedings/osdi02
http://www.hpl.hp.com/techreports/2003/HPL-2003-241.html
http://www.hpl.hp.com/techreports/2003/HPL-2003-241.html
http://www.usenix.org/publications/library/proceedings/fast03
http://www.usenix.org/publications/library/proceedings/fast03

PhD thesis, University of California, Berkeley, May 2000.
Tech. Report. no. UCB-CSD-00-1100.
[5] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing

Cambridge, MA, USA, October 1996.
[23] LeftHand Networks. IP-based storage area networks.
http://www.lefthandnetworks.com/downloads/ip-sap.pdf,

(6]

(7]

(8]

(9]

specification. http://www.storageperformance.org/, 2003. [27] Nancy A. Lynch and Alex A. Shvartsman. RAMBO: A

[10] S. Frglund, A. Merchant, Y. Saito, S. Spence, and A. Veitch. reconfigurable atomic memory service for dynamic
FAB: Enterprise storage systems on a shoestringthn networks. In16th Int. Conf. on Dist. Computing (DISC)
Workshop on Hot Topics in Operating Systems pages 173-190, Toulouse, France, October 2002.
(HOTOS-VIII) pages 169-174, Kauai, HI, USA, May 2003. [28] David L. Mills. Improved algorithms for synchronizing

[11] Svend Frglund, Arif Merchant, Yasushi Saito, Susan Spence, computer network clocks. [ACM SIGCOMM pages
and Alistair Veitch| A decentralized algorithm for 317-327, London, United Kingdom, September 1994.
erasure-coded virtual disks. Int. Conf. on Dependable [29] Brian Oki and Barbara Liskov. Viewstamped replication: A
Systems and Networks (DS$ages 125-134, Florence, new primary copy method to support highly available
Italy, June 2004. distrbuted systems. [fith Symp. on Princ. of Distr. Comp.

[12] Gregory R. Ganger, John D. Strunk, and Andrew J. (PODC), pages 8-17, Toronto, ON, Canada, August 1988.
Klosterman. Self-* storage: Brick-based storage with [30] James S. Plank. A tutorial on Reed-Solomon coding for
automated administration. Technical Report fault-tolerance in RAID-like system&oftware—Practice
CMU-CS-03-178, Carnegie Mellon University, August 2003. and Experienceg27(9):995-1012, 1997.

[13] Garth A. Gibson, David F. Nagle, Khalil Amiri, Jeff Butler, [31] Sean Reah, Patrik Eaton, Dennis Geels, Hakim
Fay W. Chang, Howard Gobioff, Charles Hardin, Erik Weatherspoon, Ben Zhao, and John Kubiatowicz. Pond: the
Riedel, David Rochberg, and Jim Zelenka. A cost-effective, OceansStore prototype. [WSENIX Conf. on File and Storage
high-bandwidth storage architecture|8th Int. Conf. on Technologies (FASTpages 1-14, San Francisco, CA, March
Arch. Support for Prog. Lang. and Op. Sys. (ASPLOS-VIII) 2003.
pages 92-103, San Jose, CA, USA, October 1998. [32] Julian Satran, Kalman Meth, Constantine Sapuntzakis,

[14] David Gifford./ Weighted voting for replicated data.7th Mallikarjun Chadalapaka, and Efri Zeidner. RFC3720:
Symp. on Op. Sys. Principles (SO3Rges 150-162, Pacific Internet small computer systems interface (iISCSI).

Grove, CA, USA, December 1979. http://www.fags.org/rfcs/rfc3720.html, 2004.

[15] Douglas Gilbert. The Linux SCSI generic HOWTO. [33] Josh Tseng, Kevin Gibbons, Franco Travostino, Curt Du
http://www.torque.net/sg/p/sg3_ho.htm|, 2003. Laney, and Joe Souza. Internet storage name service (iSNS),

[16] Garth R. Goodson, Jay J. Wylie, Gregory R. Ganger, and draft version 18.

Michael K. Reiter. Efficient consistency for erasure-coded http://www.diskdrive.com/reading-room/standards.html,
data via versioning servers. Technical Report March 2003.
CMU-CS-03-127, Carnegie Mellon University, April 2003. [34] Robbert van Renesse, Yaron Minsky, and Mark Hayden/| A

[17] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a gossip-style failure detection service.IFiP Int. Conf. on
correctness condition for concurrent obje®EM Trans. on Dist. Sys. Platforms and Open Dist. (Middlewarneages
Prog. Lang. and Sys. (TOPLASY(3):463-492, July 1990. 55-70, September 1998.

[18] Andy Huang and Armando Fox. Dstore: self-managing, [35] Carl A. Waldspurger and William E. Weihl. Lottery
crash-only persistent hash table. scheduling: Flexible propotional-share resource
http://swig.stanford.edu/public/projects/dstore/, 2004. management. list Symp. on Op. Sys. Design and Impl.

[19] IBM. IceCube: storage server for the Internet age. (OSDI}, pages 1-11, Monterey, CA, USA, November 1994.
http://www.almaden.ibm.com/cs/storagesystems/IceCube/, [36] Avishai Wool, Quorum systems in replicated databases:
2003. science or fictionBull. IEEE Technical Committee on Data

[20] Leslie Lamport. The part-time parliame®CM Trans. on Engineering21(4):3-11, December 1998.

Comp. Sys. (TOCS)6(2):133-169, 1998.

[21] Leslie Lamport. Paxos made simphRCM SIGACT News
32(4):18-25, December 2001.

[22] Edward K. Lee and Chandramohan A. Thekkath. Petal:

memory robustly in message-passing systelosrnal of the
ACM (JACM) 42(1):124-142, 1995.

Pei Cao, Swee Boon Lin, Shivakumar Venkataraman, and
John Wilkes. The TickerTAIP parallel RAID architecture.
ACM Trans. on Comp. Sys. (TOGC$2(3):236-269, 1994.
Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H.
Katz, and David A. Patterson. RAID: High-performance,
reliable secondary storageCM Computing Surveys
26(2):145-185, 1994.

Flaviu Christian and Frank Schmuck. Agreeing on processor
group membership in asynchronous distributed systems.
Technical Report CSE95-428, UC San Diego, 1995.
Storage Performance Council. SPC Benchmark 1

distributed virtual disks. 17th Int. Conf. on Arch. Support
for Prog. Lang. and Op. Sys. (ASPLOS-Yfixges 84-92,

[24]

[25]

(26]

2002.

Benjamin C. Ling, Emre Kiciman, and Armando Fox.
Session state: beyond soft statelfit Symp. on Network
Sys. Design and Impl. (NSDPages 295-308, San
Francisco, CA, USA, March 2004.

Barbara Liskov, Liuba Shrira, and John Wroclawski.
Efficient at-most-once messages based on synchronized
clocks/ACM Trans. on Comp. Sys. (TOG8{2):125-142,
1991.

Esti Yeger Lotem, Idit Keidar, and Danny Dolev. Dynamic
voting for consistent primary components lith Symp. or
Princ. of Distr. Comp. (POD()pages 63—71, Santa Barbara,
CA, USA, August 1997.

http://portal.acm.org/toc.cfm?id=200836&coll=portal
http://portal.acm.org/toc.cfm?id=200836&coll=portal
http://portal.acm.org/toc.cfm?id=185514&coll=portal
http://portal.acm.org/citation.cfm?id=176979.176981
http://portal.acm.org/citation.cfm?id=176979.176981
http://portal.acm.org/toc.cfm?id=176979&coll=portal
http://www.storageperformance.org/
http://www.hpl.hp.com/research/ssp/papers/FAB-HOTOS03.pdf
http://www.hpl.hp.com/research/ssp/papers/FAB-DSN2004.pdf
http://www.hpl.hp.com/research/ssp/papers/FAB-DSN2004.pdf
http://2004.dsn.org
http://2004.dsn.org
http://portal.acm.org/toc.cfm?id=291069&coll=portal
http://portal.acm.org/toc.cfm?id=291069&coll=portal
http://portal.acm.org/citation.cfm?id=800215.806583
http://portal.acm.org/toc.cfm?id=800215&coll=portal
http://portal.acm.org/toc.cfm?id=800215&coll=portal
http://www.torque.net/sg/p/sg_v3_ho.html
http://portal.acm.org/citation.cfm?id=78969.78972
http://portal.acm.org/citation.cfm?id=78969.78972
http://portal.acm.org/toc.cfm?id=78969&coll=portal
http://portal.acm.org/toc.cfm?id=78969&coll=portal
http://swig.stanford.edu/public/projects/dstore/
http://www.almaden.ibm.com/cs/storagesystems/IceCube/
http://portal.acm.org/citation.cfm?id=279227.279229
http://portal.acm.org/toc.cfm?id=279227&coll=portal
http://portal.acm.org/toc.cfm?id=279227&coll=portal
http://research.microsoft.com/users/lamport/pubs/pubs.html#paxos-simple
http://portal.acm.org/citation.cfm?id=237090.237157
http://portal.acm.org/citation.cfm?id=237090.237157
http://portal.acm.org/toc.cfm?id=237090&coll=portal
http://portal.acm.org/toc.cfm?id=237090&coll=portal
http://www.lefthandnetworks.com/downloads/ip-san_wp.pdf
http://portal.acm.org/toc.cfm?id=103720&coll=portal
http://portal.acm.org/toc.cfm?id=259380&coll=portal
http://portal.acm.org/toc.cfm?id=259380&coll=portal
http://portal.acm.org/toc.cfm?id=190314&coll=portal
http://portal.acm.org/toc.cfm?id=62546&coll=portal
http://portal.acm.org/toc.cfm?id=62546&coll=portal
http://www.usenix.org/publications/library/proceedings/fast03
http://www.usenix.org/publications/library/proceedings/fast03
http://www.faqs.org/rfcs/rfc3720.html
http://www.diskdrive.com/reading-room/standards.html
http://www.cs.cornell.edu/Info/People/rvr/papers/pfd/pfd.ps
http://www.cs.cornell.edu/Info/People/rvr/papers/pfd/pfd.ps
http://www.usenix.org/publications/library/proceedings/osdi94
http://www.usenix.org/publications/library/proceedings/osdi94
http://www.research.microsoft.com/research/db/debull/98dec/issue.htm
http://www.research.microsoft.com/research/db/debull/98dec/issue.htm

	Introduction
	Related work
	Overview
	Key data structures and software modules
	Data layout and load balancing

	Voting-based replication and erasure coding
	Replication
	Erasure coding
	Reducing the overhead of timestamp management
	Improving the efficiency of voting
	Handling coordinator failures

	Reconfiguration
	View agreement via dynamic voting
	Logical-block synchronization
	Streamlining synchronization
	Exploiting the quorum containment property
	Embedding the respondents in the timestamp table

	Handling permanent changes

	Choosing the right redundancy schemes
	Evaluation
	System configurations
	Application performance
	Scalability
	Performance decoupling
	Handling changes

	Conclusion
	REFERENCES -9pt

