
The Scalable Commutativity Rule:
Designing Scalable Software for Multicore Processors
Austin T. Clements

Thesis advisors:
M. Frans Kaashoek
Nickolai Zeldovich
Robert Morris
Eddie Kohler

x86 CPU trends

2005

x86 CPU trends

Sources: Stanford CPUDB, Intel ARK

1985 1990 1995 2000 2005 2010 2015

1

10

100

1,000

10,000

100,000

Clock speed (MHz)

x86 CPU trends

Sources: Stanford CPUDB, Intel ARK

1985 1990 1995 2000 2005 2010 2015

1

10

100

1,000

10,000

100,000

Clock speed (MHz)
Power (watts)

x86 CPU trends

Sources: Stanford CPUDB, Intel ARK

1985 1990 1995 2000 2005 2010 2015

1

10

100

1,000

10,000

100,000

Clock speed (MHz)
Power (watts)

x86 CPU trends

Sources: Stanford CPUDB, Intel ARK

1985 1990 1995 2000 2005 2010 2015

1

10

100

1,000

10,000

100,000

Clock speed (MHz)
Power (watts)
Cores per socket

x86 CPU trends

Sources: Stanford CPUDB, Intel ARK

1985 1990 1995 2000 2005 2010 2015

1

10

100

1,000

10,000

100,000

Clock speed (MHz)
Power (watts)
Cores per socket
Total megacycles/sec

x86 CPU trends

Software must be increasingly parallel to keep up with hardware,
but scaling with parallelism is notoriously hard

Parallelize or perish

Software must be increasingly parallel to keep up with hardware,
but scaling with parallelism is notoriously hard

0

2k

4k

6k

8k

10k

1 6 12 18 24 30 36 42 48

M
es

sa
ge

s/
se

co
nd

Cores

Exim mail server

Parallelize or perish

Software must be increasingly parallel to keep up with hardware,
but scaling with parallelism is notoriously hard

0

2k

4k

6k

8k

10k

1 6 12 18 24 30 36 42 48

M
es

sa
ge

s/
se

co
nd

Cores

Exim mail server

Problem lies in the OS kernel

Parallelize or perish

Kernel scalability is important
 • Many applications depend on the OS kernel
 • If the kernel doesn't scale, many applications won't scale

And hard
 • |kernel threads| > ∑|application threads|
 • Diverse and unknown workloads

OS kernel scalability

Linux scalability
OSDI '10

Bonsai VM
ASPLOS '12

RadixVM
EuroSys '13

Corey
OSDI '08

2008

2009

2010

2011

2012

2013

2014

Current approach to scalable software development

Linux scalability
OSDI '10

Bonsai VM
ASPLOS '12

RadixVM
EuroSys '13

Corey
OSDI '08

2008

2009

2010

2011

2012

2013

2014

Workload

Current approach to scalable software development

Linux scalability
OSDI '10

Bonsai VM
ASPLOS '12

RadixVM
EuroSys '13

Corey
OSDI '08

2008

2009

2010

2011

2012

2013

2014

Workload
Plot

scalability

Current approach to scalable software development

Linux scalability
OSDI '10

Bonsai VM
ASPLOS '12

RadixVM
EuroSys '13

Corey
OSDI '08

2008

2009

2010

2011

2012

2013

2014

Workload
Plot

scalability

Differential
profile

x()

Current approach to scalable software development

Linux scalability
OSDI '10

Bonsai VM
ASPLOS '12

RadixVM
EuroSys '13

Corey
OSDI '08

2008

2009

2010

2011

2012

2013

2014

Workload
Plot

scalability

Differential
profile

Fix top
bottleneck

x()

+++

Current approach to scalable software development

Linux scalability
OSDI '10

Bonsai VM
ASPLOS '12

RadixVM
EuroSys '13

Corey
OSDI '08

2008

2009

2010

2011

2012

2013

2014

Workload
Plot

scalability

Differential
profile

Fix top
bottleneck

x()

+++

Current approach to scalable software development

Successful in practice because it focuses developer effort

Disadvantages
 • Requires huge amounts of effort
 • New workloads expose new bottlenecks
 • More cores expose new bottlenecks
 • The real bottlenecks may be in the interface design

Current approach to scalable software development

Successful in practice because it focuses developer effort

Disadvantages
 • Requires huge amounts of effort
 • New workloads expose new bottlenecks
 • More cores expose new bottlenecks
 • The real bottlenecks may be in the interface design

Current approach to scalable software development

creat("x") creat("y") creat("z")

Interface scalability example

creat("x") creat("y") creat("z")

stdin stdout stderr

Interface scalability example

creat("x") creat("y") creat("z")

stdin stdout stderr

Solution: Change the interface?

Interface scalability example

creat("x") creat("y") creat("z")

stdin stdout stderr

Solution: Change the interface?

Interface scalability example

Whenever interface operations commute,
they can be implemented in a way that scales.

The scalable commutativity rule

Approach: Interface-driven scalability

Whenever interface operations commute,
they can be implemented in a way that scales.

The scalable commutativity rule

?creat with lowest FD
Commutes

Scalable
implementation

exists

Approach: Interface-driven scalability

Whenever interface operations commute,
they can be implemented in a way that scales.

The scalable commutativity rule

?creat with lowest FD
Commutes

Scalable
implementation

exists

creat → 3
creat → 4

Approach: Interface-driven scalability

Whenever interface operations commute,
they can be implemented in a way that scales.

The scalable commutativity rule

creat with lowest FD
Commutes

Scalable
implementation

exists
✗

Approach: Interface-driven scalability

Whenever interface operations commute,
they can be implemented in a way that scales.

The scalable commutativity rule

creat with lowest FD
Commutes

Scalable
implementation

exists
✗

?creat with any FD
creat → 42
creat → 17

Approach: Interface-driven scalability

Whenever interface operations commute,
they can be implemented in a way that scales.

The scalable commutativity rule

creat with lowest FD
Commutes

Scalable
implementation

exists
✗

creat with any FD ✓ ✓rule

Approach: Interface-driven scalability

Design

Implement

Test

The rule enables reasoning about scalability
throughout the software design process

Guides design of scalable interfaces

Sets a clear implementation target

Systematic, workload-independent scalability testing

Advantages of interface-driven scalability

The scalable commutativity rule
 • Formalization of the rule and proof of its correctness
 • State-dependent, interface-based commutativity

Commuter: An automated scalability testing tool

sv6: A scalable POSIX-like kernel

Contributions

Defining the rule
 • Definition of scalability
 • Intuition
 • Formalization

Applying the rule
 • Commuter
 • Evaluation

Outline

0

5

10

15

20

25

30

35

40

1 6 12 18 24 30 36 42 48

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Cores

gmake
Exim

A scalability bottleneck

0

5

10

15

20

25

30

35

40

1 6 12 18 24 30 36 42 48

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Cores

gmake
Exim

One contended
cache line

A single contended cache line can wreck scalability

A scalability bottleneck

1.5k

2.5k

3.5k

0

500

1k

2k

3k

1 10 20 30 40 50 60 70 80

Cy
cl

es
 to

 re
ad

1 writer + N readers

Cost of a contended cache line

1.5k

2.5k

3.5k

0

500

1k

2k

3k

1 10 20 30 40 50 60 70 80

Cy
cl

es
 to

 re
ad

1 writer + N readers

open

Cost of a contended cache line

✗ ✗

✗

Core X

Co
re

 Y

W R -
W
R
-

✓

✓

✓

-

✓

✓

What scales on today's multicores?

✗ ✗

✗

Core X

Co
re

 Y

W R -
W
R
-

✓

✓

✓

-

✓

✓

✓

What scales on today's multicores?

✗ ✗

✗

Core X

Co
re

 Y

W R -
W
R
-

✓

✓

✓

-

✓

✓

✗

What scales on today's multicores?

✗ ✗

✗

Core X

Co
re

 Y

W R -
W
R
-

✓

✓

✓

-

✓

✓

We say two or more operations are scalable if they are conflict-free.

Good approximation of
current hardware.

What scales on today's multicores?

Whenever interface operations commute,
they can be implemented in a way that scales.

Operations commute
results independent of order
communication is unnecessary
without communication, no conflicts

⇒
⇒
⇒

The intuition behind the rule

T1
T2
T3
T4
T5

iszero() → F
iszero() → F

dec() → 2
dec() → 1

dec() → 0

Example: Reference counter

T1
T2
T3
T4
T5

iszero() → F
iszero() → F

dec() → 2
dec() → 1

dec() → 0
R1

Example: Reference counter

T1
T2
T3
T4
T5

iszero() → F
iszero() → F

dec() → 2
dec() → 1

dec() → 0
R1

✓ R1 commutes; conflict-free implementation: shared counter

Example: Reference counter

T1
T2
T3
T4
T5

iszero() → F
iszero() → F

dec() → 2
dec() → 1

dec() → 0
R1 R2

✓ R1 commutes; conflict-free implementation: shared counter

Example: Reference counter

T1
T2
T3
T4
T5

iszero() → F
iszero() → F

dec() → 2
dec() → 1

dec() → 0
R1 R2

✓ R1 commutes; conflict-free implementation: shared counter
✗ R2 does not commute because dec() returns counter value

Example: Reference counter

T1
T2
T3
T4
T5

iszero() → F
iszero() → F

dec() → 2
dec() → 1

dec() → 0
R1

ok
ok

ok
R2'

✓ R1 commutes; conflict-free implementation: shared counter
✗ R2 does not commute because dec() returns counter value

Example: Reference counter

T1
T2
T3
T4
T5

iszero() → F
iszero() → F

dec() → 2
dec() → 1

dec() → 0
R1

ok
ok

ok
R2'

✓ R1 commutes; conflict-free implementation: shared counter
✗ R2 does not commute because dec() returns counter value
✓ R2' does commute; conflict-free implementation: per-core counter

Example: Reference counter

T1
T2
T3
T4
T5

iszero() → F
iszero() → F

dec() → 2
dec() → 1

dec() → 0
R1

ok
ok

ok
R2'

✓ R1 commutes; conflict-free implementation: shared counter
✗ R2 does not commute because dec() returns counter value
✓ R2' does commute; conflict-free implementation: per-core counter

R3

Example: Reference counter

T1
T2
T3
T4
T5

iszero() → F
iszero() → F

dec() → 2
dec() → 1

dec() → 0
R1

ok
ok

ok
R2'

✓ R1 commutes; conflict-free implementation: shared counter
✗ R2 does not commute because dec() returns counter value
✓ R2' does commute; conflict-free implementation: per-core counter

R3

✓ R3 depends on state
✓ Initial value > 3 ✗ Initial value ≤ 3

Example: Reference counter

T1
T2
T3
T4
T5

iszero() → F
iszero() → F

dec() → 2
dec() → 1

dec() → 0
R1

ok
ok

ok
R2'

✓ R1 commutes; conflict-free implementation: shared counter
✗ R2 does not commute because dec() returns counter value
✓ R2' does commute; conflict-free implementation: per-core counter

R3

✓ R3 depends on state
✓ Initial value > 3 ✗ Initial value ≤ 3

Example: Reference counter

Definitions
 • History
 • Reordering
 • Commutativity

Formal scalable commutativty rule

Formalizing the rule

A history H is a sequence of invocations and responses on threads.

inc() ok iszero() TT1inc()
iszero()

ok
T

T1
T2

Histories capture state and arguments

A history H is a sequence of invocations and responses on threads.

inc() ok iszero() TT1inc()
iszero()

ok
T

T1
T2

A specification 𝒮 defines an interface. 𝒮 is the set of legal histories
giving the allowed behavior of an interface. [Herlihy & Wing, '90]

Legal history Illegal history

Histories capture state and arguments

A history H is a sequence of invocations and responses on threads.

inc() ok iszero() TT1inc()
iszero()

ok
T

T1
T2

A specification 𝒮 defines an interface. 𝒮 is the set of legal histories
giving the allowed behavior of an interface. [Herlihy & Wing, '90]

Legal history Illegal history

Lets us talk about interfaces, arguments, and state without
specifying an implementation or a state representation.

Histories capture state and arguments

A reordering H' is a permutation of H that maintains operation
order for each individual thread (H|t = H'|t for all t).

Reorderings

A reordering H' is a permutation of H that maintains operation
order for each individual thread (H|t = H'|t for all t).

inc()
iszero()

ok
T

T1
T2

inc()
iszero()

ok
T

T1
T2

iszero()
inc()

T
okT1

T2

inc() okT1
T2 iszero() T

Reorderings

A reordering H' is a permutation of H that maintains operation
order for each individual thread (H|t = H'|t for all t).

inc()
iszero()

ok
T

T1
T2

inc()
iszero()

ok
T

T1
T2

iszero()
inc()

T
okT1

T2

inc() okT1
T2 iszero() T

Reorderings

A region Y of a legal history XY SIM-commutes if every reordering
Y' of Y also yields a legal history and every legal extension Z of XY is
also a legal extension of XY'.

(And this must be true for every prefix of every reordering of Y.)

Commutativity

T1
T2

A region Y of a legal history XY SIM-commutes if every reordering
Y' of Y also yields a legal history and every legal extension Z of XY is
also a legal extension of XY'.

(And this must be true for every prefix of every reordering of Y.)

I3() R3
I4() R4

Y

Commutativity

T1
T2

A region Y of a legal history XY SIM-commutes if every reordering
Y' of Y also yields a legal history and every legal extension Z of XY is
also a legal extension of XY'.

(And this must be true for every prefix of every reordering of Y.)

I3() R3
I4() R4

Y

I1()
I2()

R1
R2

X

Commutativity

T1
T2

A region Y of a legal history XY SIM-commutes if every reordering
Y' of Y also yields a legal history and every legal extension Z of XY is
also a legal extension of XY'.

(And this must be true for every prefix of every reordering of Y.)

I3() R3
I4() R4

Y

I1()
I2()

R1
R2

X

Commutativity

T1
T2

A region Y of a legal history XY SIM-commutes if every reordering
Y' of Y also yields a legal history and every legal extension Z of XY is
also a legal extension of XY'.

(And this must be true for every prefix of every reordering of Y.)

I3() R3
I4() R4

Y

I1()
I2()

R1
R2

X

I5()
I6()

R5
R6

Z

Commutativity

Let 𝒮 be a specification with a reference implementation M.
Consider a history XY where Y commutes in XY and M can generate XY.

There exists a correct implementation of 𝒮 whose execution of XY is
conflict-free in the commutative region Y.

The formal scalable commutativity rule

Let 𝒮 be a specification with a reference implementation M.
Consider a history XY where Y commutes in XY and M can generate XY.

There exists a correct implementation of 𝒮 whose execution of XY is
conflict-free in the commutative region Y.

M'
X

Emulate M

Y

Emulate M

The formal scalable commutativity rule

Let 𝒮 be a specification with a reference implementation M.
Consider a history XY where Y commutes in XY and M can generate XY.

There exists a correct implementation of 𝒮 whose execution of XY is
conflict-free in the commutative region Y.

M'
X

Emulate M

Y

Emulate M

The formal scalable commutativity rule

Let 𝒮 be a specification with a reference implementation M.
Consider a history XY where Y commutes in XY and M can generate XY.

There exists a correct implementation of 𝒮 whose execution of XY is
conflict-free in the commutative region Y.

M'
X

Emulate M

Y

Emulate M

The formal scalable commutativity rule

Applying the rule to real systems

Commuter

Applying the rule to real systems

Interface specification
(e.g., POSIX)

Implementation
(e.g., Linux)

All scalability
bottlenecks

Commuter

Applying the rule to real systems

SymInode = tstruct(data = tlist(SymByte),
 nlink = SymInt)
SymIMap = tdict(SymInt, SymInode)
SymFilename = tuninterpreted('Filename')
SymDir = tdict(SymFilename, SymInt)

class POSIX:
 def __init__(self):
 self.fname_to_inum = SymDir.any()
 self.inodes = SymIMap.any()

 @symargs(src=SymFilename, dst=SymFilename)
 def rename(self, src, dst):
 if src not in self.fname_to_inum:
 return (-1, errno.ENOENT)
 if src == dst:
 return 0
 if dst in self.fname_to_inum:
 self.inodes[self.fname_to_inum[dst]].nlink -= 1
 self.fname_to_inum[dst] = self.fname_to_inum[src]
 del self.fname_to_inum[src]
 return 0

Symbolic model

Input: Symbolic model

Important to have discriminating commutativity conditions
 • ∀states, rename almost never commutes
 • More commutative cases ⇒ more opportunities to scale
 • Captures more operations applications actually do

rename(a, b) and rename(c, d) commute if:
 • Both source files exist and all names are different
 • Neither source file exists
 • a xor c exists, and it is not the other rename's destination
 • Both calls are self-renames
 • One call is a self-rename of an existing file and a ≠ c
 • a and c are hard links to the same inode, a ≠ c, and b = d

 def __init__(self):
 self.fname_to_inum = SymDir.any()
 self.inodes = SymIMap.any()

 @symargs(src=SymFilename, dst=SymFilename)
 def rename(self, src, dst):
 if src not in self.fname_to_inum:
 return (-1, errno.ENOENT)
 if src == dst:
 return 0
 if dst in self.fname_to_inum:
 self.inodes[self.fname_to_inum[dst]].nlink -= 1
 self.fname_to_inum[dst] = self.fname_to_inum[src]
 del self.fname_to_inum[src]
 return 0

Symbolic model

Analyzer

Commutativity
conditions

Commutativity conditions

Important to have discriminating commutativity conditions
 • ∀states, rename almost never commutes
 • More commutative cases ⇒ more opportunities to scale
 • Captures more operations applications actually do

rename(a, b) and rename(c, d) commute if:
 • Both source files exist and all names are different
 • Neither source file exists
 • a xor c exists, and it is not the other rename's destination
 • Both calls are self-renames
 • One call is a self-rename of an existing file and a ≠ c
 • a and c are hard links to the same inode, a ≠ c, and b = d

 if src not in self.fname_to_inum:
 return (-1, errno.ENOENT)
 if src == dst:
 return 0
 if dst in self.fname_to_inum:
 self.inodes[self.fname_to_inum[dst]].nlink -= 1
 self.fname_to_inum[dst] = self.fname_to_inum[src]
 del self.fname_to_inum[src]
 return 0

Symbolic model

Analyzer

Commutativity
conditions

Commutativity conditions

Important to have discriminating commutativity conditions
 • ∀states, rename almost never commutes
 • More commutative cases ⇒ more opportunities to scale
 • Captures more operations applications actually do

rename(a, b) and rename(c, d) commute if:
 • Both source files exist and all names are different
 • Neither source file exists
 • a xor c exists, and it is not the other rename's destination
 • Both calls are self-renames
 • One call is a self-rename of an existing file and a ≠ c
 • a and c are hard links to the same inode, a ≠ c, and b = d

 if src not in self.fname_to_inum:
 return (-1, errno.ENOENT)
 if src == dst:
 return 0
 if dst in self.fname_to_inum:
 self.inodes[self.fname_to_inum[dst]].nlink -= 1
 self.fname_to_inum[dst] = self.fname_to_inum[src]
 del self.fname_to_inum[src]
 return 0

Symbolic model

Analyzer

Commutativity
conditions

Commutativity conditions

Important to have discriminating commutativity conditions
 • ∀states, rename almost never commutes
 • More commutative cases ⇒ more opportunities to scale
 • Captures more operations applications actually do

rename(a, b) and rename(c, d) commute if:
 • Both source files exist and all names are different
 • Neither source file exists
 • a xor c exists, and it is not the other rename's destination
 • Both calls are self-renames
 • One call is a self-rename of an existing file and a ≠ c
 • a and c are hard links to the same inode, a ≠ c, and b = d

 if src not in self.fname_to_inum:
 return (-1, errno.ENOENT)
 if src == dst:
 return 0
 if dst in self.fname_to_inum:
 self.inodes[self.fname_to_inum[dst]].nlink -= 1
 self.fname_to_inum[dst] = self.fname_to_inum[src]
 del self.fname_to_inum[src]
 return 0

Symbolic model

Analyzer

Commutativity
conditions

Commutativity conditions

Important to have discriminating commutativity conditions
 • ∀states, rename almost never commutes
 • More commutative cases ⇒ more opportunities to scale
 • Captures more operations applications actually do

rename(a, b) and rename(c, d) commute if:
 • Both source files exist and all names are different
 • Neither source file exists
 • a xor c exists, and it is not the other rename's destination
 • Both calls are self-renames
 • One call is a self-rename of an existing file and a ≠ c
 • a and c are hard links to the same inode, a ≠ c, and b = d

 def __init__(self):
 self.fname_to_inum = SymDir.any()
 self.inodes = SymIMap.any()

 @symargs(src=SymFilename, dst=SymFilename)
 def rename(self, src, dst):
 if src not in self.fname_to_inum:
 return (-1, errno.ENOENT)
 if src == dst:
 return 0
 if dst in self.fname_to_inum:
 self.inodes[self.fname_to_inum[dst]].nlink -= 1
 self.fname_to_inum[dst] = self.fname_to_inum[src]
 del self.fname_to_inum[src]
 return 0

Symbolic model

Analyzer

Commutativity
conditions

Commutativity conditions

Symbolic model

Analyzer

Commutativity
conditions

Testgen

Test cases

rename(a, b) and rename(c, d) commute if:
 • Both source files exist and all names are different
 • Neither source file exists
 • a xor c exists, and it is not the other rename's destination
 • Both calls are self-renames
 • One call is a self-rename of an existing file and a ≠ c
 • a and c are hard links to the same inode, a ≠ c, and b = d

 del self.fname_to_inum[src]
 return 0

void setup() {
 close(creat("f0", 0666));
 close(creat("f2", 0666));
}
void test_opA() { rename("f0", "f1"); }
void test_opB() { rename("f2", "f3"); }

+ 26 more

Test cases

Symbolic model

Analyzer

Commutativity
conditions

Testgen

Test cases

Linux

Conflicting cache lines

Mtrace/QEMU

 • One call is a self-rename of an existing file and a ≠ c
 • a and c are hard links to the same inode, a ≠ c, and b == d

void setup() {
 close(creat("f0", 0666));
 close(creat("f2", 0666));
}
void test_opA() { rename("f0", "f1"); }
void test_opB() { rename("f2", "f3"); }

test_opA test_opB

010100010111001110010110011010101010101
d_entry.d_lock
inode_cache

+17 more conflicts

Output: Conflicting cache lines

Does the rule help build scalable systems?

Evaluation

(Linux 3.8, ramfs)

open
link

unlink
rename

stat
fstat

lseek
close
pipe
read
write

pread
pwrite
mmap

munmap
mprotect
memread
memwrite

m
em

w
rit

e
m

em
re

ad
m

pr
ot

ec
t

m
un

m
ap

m
m

ap
pw

rit
e

pr
ea

d
w

rit
e

re
ad

pi
pe

cl
os

e
ls

ee
k

fs
ta

t
st

at
re

na
m

e
un

lin
k

lin
k

op
en

All tests
conflict-free

All tests
conflicted

13,664 total test cases
68% are conflict-free

Commuter finds non-scalable cases in Linux

(Linux 3.8, ramfs)

open
link

unlink
rename

stat
fstat

lseek
close
pipe
read
write

pread
pwrite
mmap

munmap
mprotect
memread
memwrite

m
em

w
rit

e
m

em
re

ad
m

pr
ot

ec
t

m
un

m
ap

m
m

ap
pw

rit
e

pr
ea

d
w

rit
e

re
ad

pi
pe

cl
os

e
ls

ee
k

fs
ta

t
st

at
re

na
m

e
un

lin
k

lin
k

op
en

All tests
conflict-free

All tests
conflicted

13,664 total test cases
68% are conflict-free

Directory-wide locking

File descriptor reference counts

Address space-wide locking

Commuter finds non-scalable cases in Linux

(Linux 3.8, ramfs)

open
link

unlink
rename

stat
fstat

lseek
close
pipe
read
write

pread
pwrite
mmap

munmap
mprotect
memread
memwrite

m
em

w
rit

e
m

em
re

ad
m

pr
ot

ec
t

m
un

m
ap

m
m

ap
pw

rit
e

pr
ea

d
w

rit
e

re
ad

pi
pe

cl
os

e
ls

ee
k

fs
ta

t
st

at
re

na
m

e
un

lin
k

lin
k

op
en

All tests
conflict-free

All tests
conflicted

13,664 total test cases
68% are conflict-free

Many potential future bottlenecks

Commuter finds non-scalable cases in Linux

POSIX-like operating system

File system and virtual memory system follow commutativity rule

Implementation using standard parallel programming techniques,
 but guided by Commuter

sv6: A scalable OS

open
link

unlink
rename

stat
fstat

lseek
close
pipe
read
write

pread
pwrite
mmap

munmap
mprotect
memread
memwrite

m
em

w
rit

e
m

em
re

ad
m

pr
ot

ec
t

m
un

m
ap

m
m

ap
pw

rit
e

pr
ea

d
w

rit
e

re
ad

pi
pe

cl
os

e
ls

ee
k

fs
ta

t
st

at
re

na
m

e
un

lin
k

lin
k

op
en

All tests
conflict-free

All tests
conflicted

Ze
ro

 ca
ch

e

lin
es

 sh
are

d

13,664 total test cases
99% are conflict-free

Remaining 1% are mostly "idempotent updates"

Commutative operations can be made to scale

open
link

unlink
rename

stat
fstat

lseek
close
pipe
read
write

pread
pwrite
mmap

munmap
mprotect
memread
memwrite

m
em

w
rit

e
m

em
re

ad
m

pr
ot

ec
t

m
un

m
ap

m
m

ap
pw

rit
e

pr
ea

d
w

rit
e

re
ad

pi
pe

cl
os

e
ls

ee
k

fs
ta

t
st

at
re

na
m

e
un

lin
k

lin
k

op
en

All tests
conflict-free

All tests
conflicted

Ze
ro

 ca
ch

e

lin
es

 sh
are

d

13,664 total test cases
99% are conflict-free

Remaining 1% are mostly "idempotent updates"

Two pwrites of same
data to same offset

Two lseeks of same FD
to the same offset

Commutative operations can be made to scale

 • Lowest FD versus any FD
 • stat versus xstat
 • Unordered sockets
 • Delayed munmap
 • fork+exec versus posix_spawn

Refining POSIX with the rule

qmail-like multithreaded mail server

Non-commutative APIs:
 Lowest FD
 Ordered sockets
 fork+exec

0

10k

20k

30k

40k

50k

60k

70k

1 10 20 30 40 50 60 70 80

To
ta

l e
m

ai
ls

/s
ec

cores

Commutative operations matter to app scalabiliy

qmail-like multithreaded mail server

Non-commutative APIs:
 Lowest FD
 Ordered sockets
 fork+exec

0

10k

20k

30k

40k

50k

60k

70k

1 10 20 30 40 50 60 70 80

To
ta

l e
m

ai
ls

/s
ec

cores

Commutative APIs:
 Any FD
 Unordered sockets
 posix_spawn

Commutative operations matter to app scalabiliy

Commutativity and concurrency
 • [Bernstein '81]
 • [Weihl '88]
 • [Steele '90]
 • [Rinard '97]
 • [Shapiro '11]

Laws of Order [Attiya '11]

Disjoint-access parallelism [Israeli '94]
Scalable locks [MCS '91]
Scalable reference counting [Ellen '07, Corbet '10]

Related work

Whenever interface operations commute,
they can be implemented in a way that scales.

Design
Implement
Test

Conclusion

Whenever interface operations commute,
they can be implemented in a way that scales.

Design
Implement
Test

Check out the code at http://pdos.csail.mit.edu/commuter

Conclusion

