
APRIL 2017 | VOL. 60 | NO. 4 | COMMUNICATIONS OF THE ACM 75

Certifying a File System Using
Crash Hoare Logic: Correctness
in the Presence of Crashes
By Tej Chajed, Haogang Chen, Adam Chlipala, M. Frans Kaashoek, Nickolai Zeldovich, and Daniel Ziegler

DOI:10.1145/3051092

Abstract
FSCQ is the first file system with a machine-checkable proof
that its implementation meets a specification, even in the
presence of fail-stop crashes. FSCQ provably avoids bugs that
have plagued previous file systems, such as performing disk
writes without sufficient barriers or forgetting to zero out
directory blocks. If a crash happens at an inopportune time,
these bugs can lead to data loss. FSCQ’s theorems prove
that, under any sequence of crashes followed by reboots,
FSCQ will recover its state correctly without losing data.

To state FSCQ’s theorems, this paper introduces the
Crash Hoare logic (CHL), which extends traditional Hoare
logic with a crash condition, a recovery procedure, and logical
address spaces for specifying disk states at different abstrac-
tion levels. CHL also reduces the proof effort for developers
through proof automation. Using CHL, we developed, speci-
fied, and proved the correctness of the FSCQ file system.
Although FSCQ’s design is relatively simple, experiments
with FSCQ as a user-level file system show that it is sufficient
to run Unix applications with usable performance. FSCQ’s
specifications and proofs required significantly more work
than the implementation, but the work was manageable
even for a small team of a few researchers.

1. INTRODUCTION
This paper describes Crash Hoare logic (CHL), which allows
developers to write specifications for crash-safe storage sys-
tems and also prove them correct. “Correct” means that,
if a computer crashes due to a power failure or other fail-
stop fault and subsequently reboots, the storage system
will recover to a state consistent with its specification (e.g.,
POSIX17). For example, after recovery, either all disk writes
from a file-system call will be on disk, or none will be. Using
CHL we write a simple specification for a subset of POSIX
and build the FSCQ certified file system, which comes with a
machine-checkable proof that its implementation matches
the specification.

Proving the correctness of a file system implementation is
important, because existing file systems have a long history
of bugs both in normal operation and in handling crashes.24
Reasoning about crashes is especially challenging because
it is difficult for the file-system developer to consider all
possible points where a crash could occur, both while a file-
system call is running and during the execution of recovery
code. Often, a system may work correctly in many cases, but
if a crash happens at a particular point between two specific
disk writes, then a problem arises.29, 39

Most approaches to building crash-safe file systems fall
roughly into three categories (see the SOSP paper3 for a more
in-depth discussion of related work): testing, program analy-
sis, and model checking. Although they are effective at find-
ing bugs in practice, none of them can guarantee the absence
of crash-safety bugs in actual implementations. This paper
focuses precisely on this issue: helping developers build file
systems with machine-checkable proofs that they correctly
recover from crashes at any point.

Researchers have used theorem provers for certifying
real-world systems such as compilers,23 small kernels,22 ker-
nel extensions,35 and simple remote servers.15 Some certifi-
cation projects1, 10, 11, 18, 28, 32 have even targeted file systems,
as we do, but in each case either the file system was not
complete, executable, and ready to run on a real operating
system; or its proof did not consider crashes. Reasoning
about crash-free executions typically involves considering
the states before and after some operation. Reasoning about
crashes is more complicated because crashes can expose
intermediate states of an operation.

Building an infrastructure for reasoning about file-
system crashes poses several challenges. Foremost among
those challenges is the need for a specification framework
that allows the file-system developer to formalize the sys-
tem behavior under crashes. Second, it is important that
the specification framework allows for proofs to be auto-
mated, so that one can make changes to a specification and
its implementation without having to redo all of the proofs
manually. Third, the specification framework must be able
to capture important performance optimizations, such as
asynchronous disk writes, so that the implementation of a
file system has acceptable performance. Finally, the specifi-
cation framework must allow modular development: devel-
opers should be able to specify and verify each component
in isolation and then compose verified components. For
instance, once a logging layer has been implemented, file-
system developers should be able to prove end-to-end crash
safety in the inode layer simply by relying on the fact that
logging ensures atomicity; they should not need to consider
every possible crash point in the inode code.

CHL addresses these challenges by allowing program-
mers to specify what invariants hold in case of crashes and

The original version of this paper is entitled “Using Crash
Hoare Logic for Certifying the FSCQ File System” and was
published in the Proceedings of the 25th ACM Symposium
on Operating Systems Principles (SOSP ’15).3

http://dx.doi.org/10.1145/3051092

research highlights

76 COMMUNICATIONS OF THE ACM | APRIL 2017 | VOL. 60 | NO. 4

by incorporating the notion of a recovery procedure that
runs after a crash. CHL supports the construction of modu-
lar systems through a notion of logical address spaces. CHL
also allows for a high degree of proof automation. Using
CHL we specified and proved correct the FSCQ file system,
which includes a simple write-ahead log and which uses
asynchronous disk writes.

The next section of this article gives an overview of our
system architecture, including implementation and proof.
Then we introduce CHL, our approach to verifying storage
programs that may crash. Afterward, we discuss our proto-
type file-system implementation FSCQ that we verified with
CHL, and we evaluate it in terms of performance, correct-
ness, and other desirable qualities.

2. SYSTEM OVERVIEW
We have implemented the CHL specification framework
with the widely used Coq proof assistant,8 which provides a
single programming language for both proof and implemen-
tation. The source code is available at https://github.com/
mit-pdos/fscq. Figure 1 shows the components involved in
the implementation. CHL is a small specification language
embedded in Coq that allows a file-system developer to write
specifications that include crash conditions and recovery pro-
cedures, and to prove that implementations meet these spec-
ifications. We have stated the semantics of CHL and proven
it sound in Coq.

We implemented and certified FSCQ using CHL. That
is, we wrote specifications for a subset of the POSIX system

calls using CHL, implemented those calls inside of Coq, and
proved that the implementation of each call meets its speci-
fication. We devoted substantial effort to building reusable
proof automation for CHL. However, writing specifications
and proofs still took a significant amount of time, compared
to the time spent writing the implementation.

As a standard of completeness for FSCQ, we aimed for the
same features as the xv6 file system,9 a teaching operating
system that implements the Unix v6 file system with write-
ahead logging. FSCQ supports fewer features than today’s
Unix file systems; for example, it lacks support for multi-
processors and deferred durability (i.e., fsync). However, it
provides the core POSIX file-system calls, including support
for large files using indirect blocks, nested directories, and
rename.

Using Coq’s extraction feature, we do automatic transla-
tion of the Coq code for FSCQ into a Haskell program. We
run this generated implementation combined with a small
(uncertified) Haskell driver as a FUSE12 user-level file server.
This implementation strategy allows us to run unmodified
Unix applications but pulls in Haskell, our Haskell driver,
and the Haskell FUSE library as trusted components.

3. CRASH HOARE LOGIC
Our goal is to allow developers to certify the correctness
of a storage system formally—that is, to prove that it func-
tions correctly during normal operation and that it recov-
ers properly from any possible crashes. As mentioned in
the abstract, a file system might forget to zero out the con-
tents of newly allocated directory or indirect blocks, lead-
ing to corruption during normal operation, or it might
perform disk writes without sufficient barriers, leading to
disk contents that might be unrecoverable. Prior work has
shown that even mature file systems in the Linux kernel
have such bugs during normal operation24 and in crash
recovery.38

To prove that an implementation meets its specification,
we must have a way for the developer to declare which behav-
iors are permissible under crashes. To do so, we extend Hoare
logic,16 where specifications are of the form {P} procedure
{Q}. Here, procedure could be a sequence of disk operations
(e.g., read and write), interspersed with computation, that
manipulates the persistent state on disk, like the implemen-
tation of the rename system call or a lower-level operation
like allocating a disk block. P corresponds to the precon-
dition that should hold before procedure is run and Q is
the postcondition. To prove that a specification is correct,
we must prove that procedure establishes Q, assuming P
holds before invoking procedure. In our rename system
call example, P might require that the file system be repre-
sented by some tree t and Q might promise that the resulting
file system is represented by a modified tree t′ reflecting the
rename operation.

Hoare logic is insufficient to reason about crashes,
because a crash may cause procedure to stop at any point
in its execution and may leave the disk in a state where Q does
not hold (e.g., in the rename example, the new file name has
been created already, but the old file name has not yet been
removed). Furthermore, if the computer reboots, it often

mv a b

Crash Hoare logic

Crash model
Proof automation

. . .

FSCQ

Definition rename : = ...
Theorem rename_ok: spec.
Proof.
 . . .

Qed.

Coq proof checker

OK?

Coq extraction

Haskell FUSE driver
and libraries

Haskell code for FSCQ

Haskell compiler

FSCQ’s FUSE file server

Linux kernel

rename()
FUSE
upcall

Disk reads,
writes, and syncs

Disk

Figure 1. Overview of FSCQ’s implementation. Rectangular boxes
denote source code; rounded boxes denote processes. Shaded boxes
denote source code written by hand. The dashed line denotes the
Haskell compiler producing an executable binary for FSCQ’s FUSE
file server.

APRIL 2017 | VOL. 60 | NO. 4 | COMMUNICATIONS OF THE ACM 77

runs a recovery procedure (such as fsck) before resuming
normal operation. Hoare logic does not provide a notion
that at any point during procedure’s execution, a recovery
procedure may run. The rest of this section describes how
CHL extends Hoare logic to handle crashes.

Traditional Hoare logic distinguishes between partial
correctness, where we prove that terminating programs
give correct answers, and total correctness, where we also
prove termination. We use Coq’s built-in termination
checker to guarantee that our system calls always finish,
when no crashes occur. However, we model cases where a
program still runs forever, because it keeps crashing and
then crashing again during recovery, ad infinitum. For that
reason, our specifications can be interpreted as total cor-
rectness for crash-free executions and partial correctness
for crashing executions, which makes sense, since the
underlying hardware platform refuses to give the program-
mer a way to guarantee normal termination in the presence
of crashes.

3.1. Example
Many file-system operations must update two or more disk
blocks atomically. For example, when creating a file, the
file system must both mark an inode as allocated as well as
update the directory in which the file is created (to record
the file name with the allocated inode number). To ensure
correct behavior under crashes, a common approach is
to use a write-ahead log. Logging guarantees that, if a file-
system operation crashed while applying its changes to the
disk, then after a crash, a recovery procedure can finish the
job by applying the log contents. Write-ahead logging makes
it possible to avoid the undesirable intermediate state where
the inode is allocated but not recorded in the directory,
effectively losing an inode. Many file systems, including
widely used ones like Linux’s ext4,34 employ logging exactly
for this reason.

The simple procedure shown in Figure 2 captures the
essence of file-system calls that must update two or more
blocks. The procedure performs two disk writes using a
write-ahead log, which supplies the log_begin, log_commit,
and log_write APIs. The procedure log_write appends
a block’s content to an in-memory log, instead of updating
the disk block in place. The procedure log_commit writes
the log to disk, writes a commit record, and then copies the
block contents from the log to the blocks’ locations on disk.
If this procedure crashes and the system reboots, the recov-
ery procedure runs. The recovery procedure looks for the
commit record. If there is a commit record, it completes the
operation by copying the block contents from the log into
the proper locations and then cleans the log.

If there is no commit record, then the recovery proce-
dure just cleans the log. If there is a crash during recovery,
then after reboot the recovery procedure runs again. In prin-
ciple, this may happen several times. If the recovery finishes,
however, then either both blocks have been updated or nei-
ther has. Thus, in the atomic_two_write procedure from
Figure 2, the write-ahead log guarantees that either both
writes happen or neither does, no matter when and how
many crashes happen.

CHL makes it possible to write specifications for proce-
dures such as atomic_two_write and the write-ahead
logging system, as we will explain in the rest of the section.

3.2. Crash conditions
CHL needs a way for developers to write down predicates
about disk states, such as a description of the possible inter-
mediate states where a crash could occur. To do this, CHL
extends Hoare logic with crash conditions, similar in spirit
to prior work on fail-stop processors33, Section 3 and fault con-
ditions from concurrent work,28 but formalized precisely
to allow for executable implementations and machine-
checked proofs.

For modularity, CHL should allow reasoning about just
one part of the disk, rather than having to specify the con-
tents of the entire disk at all times. For example, we want
to specify what happens with the two blocks that atomic_
two_write updates and not have to say anything about the
rest of the disk. To do this, CHL employs separation logic,30
which is a way of combining predicates on disjoint parts of
a store (in our case, the disk). The basic predicate in sepa-
ration logic is a points-to relation, written as a  v, which
means that address a has value v. Given two predicates x and
y, separation logic allows CHL to produce a combined predi-
cate x  y. The  operator means that the disk can be split
into two disjoint parts, where one satisfies the x predicate,
and the other satisfies y.

To reason about the behavior of a procedure in the pres-
ence of crashes, CHL allows a developer to capture both
the state at the end of the procedure’s crash-free execution
and the intermediate states during the procedure’s execu-
tion in which a crash could occur. For example, Figure 3
shows the CHL specification for FSCQ’s disk_write. (In
our implementation of CHL, these specifications are writ-
ten in Coq code; we show here an easier-to-read version.)
We will describe the precise notation shortly, but for now,
note that the specification has four parts: the procedure
about which we are reasoning, disk_write(a, v); the
precondition, disk: a  〈v0, vs〉  other_blocks; the post-
condition if there are no crashes, disk: a  〈v, [v0]⊕vs〉 
other_blocks; and the crash condition, disk: a  〈v0, vs〉 

def atomic_two_write(a1, v1, a2, v2):
log_begin()
log_write(a1, v1)
log_write(a2, v2)
log_commit()

Figure 2. Pseudocode of atomic_two_write.
SPEC disk_write(a, v)
PRE disk: a � 〈v0, vs〉 � other_blocks
POST disk: a � 〈v, [v0]⊕ vs〉 � other_blocks
CRASH disk: a � 〈v0, vs〉 � other_blocks ∨

a � 〈v, [v0]⊕ vs〉) � other_blocks

Figure 3. Specification for disk_write.

research highlights

78 COMMUNICATIONS OF THE ACM | APRIL 2017 | VOL. 60 | NO. 4

other_blocks ∨ a  〈v, [v0]⊕vs〉  other_blocks. Moreover,
note that the crash condition specifies that disk_write
could crash in two possible states (either before making
the write or after). In all three logical conditions, other_
blocks stands for the arbitrary contents of all other disk
blocks beside a, which should be preserved by this opera-
tion, even in case of a crash.

The specification in Figure 3 captures asynchronous
writes. To do so, CHL models the disk as a (partial) function
from a block number to a tuple, 〈v, vs〉, consisting of the last-
written value v and a set of previous values vs, any of which
could appear on disk after a crash. Block numbers greater
than the size of the disk do not map to anything. Reading
from a block returns the last-written value, since even if
there are previous values that might appear after a crash, in
the absence of a crash a read should return the last write.
Writing to a block makes the new value the last-written value
and adds the old last-written value to the set of previous val-
ues. Reading or writing a block number that does not exist
causes the system to “fail” (as opposed to finishing or crash-
ing). Finally, CHL’s disk model supports a sync operation,
which forces the disk to flush pending writes to persistent
storage, modeled in the postcondition for sync by discard-
ing all previous values.

Returning to Figure 3, the disk_write specification
asserts through the precondition that the address being
written, a, must be valid (i.e., within the disk’s size), by stat-
ing that address a points to some value 〈v0, vs〉 on disk. The
specification’s postcondition asserts that the block being
modified will contain the new value 〈v, [v0]⊕vs〉; that is,
the new last-written value is v, and v0 is added to the set of
previous values. The specification also asserts through the
crash condition that disk_write could crash in a state
that satisfies a  〈v0, vs〉  other_blocks ∨ a  〈v, [v0]⊕vs〉
 other_blocks, that is, either the write did not happen
(a still has 〈v0, vs〉) or it did (a has 〈v, [v0]⊕vs〉). Finally, the
specification asserts that the rest of the disk is unaffected:
if other disk blocks satisfied some predicate other_blocks
before disk_write, they will still satisfy the same predi-
cate afterward.

One subtlety of CHL’s crash conditions is that they
describe the state of the disk just before the crash occurs,
rather than just after. Right after a crash, CHL’s disk model
specifies that each block nondeterministically chooses one
value from the set of possible values before the crash. For
instance, the first line of Figure 3’s crash condition says that
the disk still “contains” all previous writes, represented by
〈v0, vs〉, rather than a specific value that persisted across the
crash, chosen out of [v0]⊕vs. This choice of representing
the state before the crash rather than after the crash allows
the crash condition to be similar to the pre- and postcondi-
tions. For example, in Figure 3, the state of other blocks just
before a crash matches the other_blocks predicate, as in the
pre- and postconditions. However, describing the state after
the crash would require a more complex predicate (e.g., if
other_blocks contains unsynced disk writes, the state after
the crash must choose one of the possible values). Making
crash conditions similar to pre- and postconditions is good
for proof automation.

The specification of disk_write captures two impor-
tant behaviors of real disks—that the disk controller can
defer flushing pending writes to persistent storage and can
reorder them—in order to achieve good performance. CHL
could model a simpler synchronous disk by specifying that
a points to a single value (instead of a set of values) and
changing the crash condition to say that either a points to
the new value (a  v) or a points to the old value (a  v0).
This change would simplify proofs, but this model of a disk
would be accurate only if the disk were running in synchro-
nous mode with no write buffering, which achieves lower
performance.

The disk_write specification states that blocks are
written atomically; that is, after a crash, a block must con-
tain either the last-written value or one of the previous
values, and partial block writes are not allowed. This is a
common assumption made by file systems and we believe it
matches the behavior of many disks in practice. Using CHL,
we could capture the notion of partial block writes by speci-
fying a more complicated crash condition, but the specifi-
cation shown here matches the common assumption. We
leave to future work the question of how to build a certified
file system without that assumption.

Much like other Hoare-logic-based approaches, CHL
requires developers to write a complete specification for
every procedure, including internal ones (e.g., allocating
an object from a free bitmap). This requires stating pre-
cise pre- and postconditions. In CHL, developers must also
write a crash condition for every procedure. In practice,
we have found that the crash conditions are often simpler
to state than the pre- and postconditions. For example, in
FSCQ, most crash conditions in layers above the log sim-
ply state that there is an active (uncommitted) transaction;
only the top-level system-call code begins and commits
transactions.

3.3. Logical address spaces
The above example illustrates how CHL can specify predi-
cates about disk contents, but file systems often need to
express similar predicates at other levels of abstraction
as well. Consider the Unix pwrite system call. Its speci-
fication should be similar to disk_write, except that it
should describe offsets and values within the file’s con-
tents, rather than block numbers and block values on disk.
Expressing this specification directly in terms of disk con-
tents is tedious. For example, describing pwrite might
require saying that we allocated a new block from the bit-
map allocator, grew the inode, perhaps allocated an indi-
rect block, and modified some disk block that happens
to correspond to the correct offset within the file. Writing
such complex specifications is also error-prone, which
can result in significant wasted effort in trying to prove an
incorrect spec.

To capture such high-level abstractions in a concise man-
ner, we observe that many of these abstractions deal with
logical address spaces. For example, the disk is an address
space from disk-block numbers to disk-block contents; the
inode layer is an address space from inode numbers to inode
structures; each file is a logical address space from offsets

APRIL 2017 | VOL. 60 | NO. 4 | COMMUNICATIONS OF THE ACM 79

states d1 or d2. Using log_intact allows us to capture
all possible crash states concisely, including states that
can appear deep inside any procedure that atomic_two_
write might call (e.g., crashes inside log_commit).

3.4. Recovery execution semantics
Crash conditions and address spaces allow us to specify the
possible states in which the computer might crash in the
middle of a procedure’s execution. We also need a way to
reason about recovery, including crashes during recovery.

For example, we want to argue that a transaction pro-
vides all-or-nothing atomicity: if atomic_two_write
crashes prior to invoking log_commit, none of the calls
to log_write will be applied; after log_commit returns,
all of them will be applied; and if atomic_two_write
crashes during log_commit, either all or none of them will
take effect. To achieve this property, the transaction system
must run log_recover after every crash to roll forward
any committed transaction, including after crashes during
log_recover itself.

The specification of the log_recover procedure is
shown in Figure 5. It says that, starting from any state
matching log_intact(last_state, committed_state),
log_recover will either roll back the transaction to last_
state or will roll forward a committed transaction to
committed_state. Furthermore, the fact that log_recover’s
crash condition implies the precondition indicates that
log_recover is idempotent, meaning that it can be safely
restarted after a crash to achieve the same postcondition.
(Strictly speaking, this sense of idempotence differs from
the mathematical notion, but follows conventions estab-
lished in early work on fault-tolerant storage systems.14)

To formalize the requirement that log_recover must
run after a crash, CHL provides a recovery execution seman-
tics. The recovery semantics talks about two procedures exe-
cuting (a normal procedure and a recovery procedure) and
producing either a failure, a completed state (after finishing
the normal procedure), or a recovered state (after finishing the
recovery procedure). This regime models the notion that the
normal procedure tries to execute and reach a completed
state, but if the system crashes, it starts running the recovery
procedure (perhaps multiple times if there are crashes during
recovery), which produces a recovered state.

Figure 6 shows how to extend the atomic_two_write
specification to include recovery execution using the  nota-
tion. The postcondition indicates that, if atomic_two_
write finishes without crashing, both blocks were updated,
and if one or more crashes occurred, with log_recover
running after each crash, either both blocks were updated

to data within that file; and a directory is a logical address
space from file names to inode numbers. Building on this
observation, CHL generalizes the separation logic for rea-
soning about the disk to similarly reason about higher-level
address spaces like files, directories, or the logical disk con-
tents in a logging system.

As an example of address spaces, consider the specifi-
cation of atomic_two_write, shown in Figure 4. Rather
than describe how atomic_two_write modifies the
on-disk data structures, the specification introduces new
address spaces, start_state and new_state, which corre-
spond to the contents of the logical disk provided by the
logging system. Logical address spaces allow the developer
of the logging system to state a clean specification, which
provides the abstraction of a simple, synchronous disk to
higher layers in the file system. Developers of higher layers
can then largely ignore the details of the underlying asyn-
chronous disk.

Specifically, in the precondition, a1  vx applies to the
address space representing the starting contents of the
logical disk, and in the postcondition, a1  v1 applies to
the new contents of the logical disk. Like the physical disk,
these address spaces are partial functions from addresses
to values (in this case, mapping 64-bit block numbers to
4 KB block values). Unlike the physical disk, the logical disk
address space provided by the logging system associates
a single value with each block, rather than a set of values,
because the transaction system exports a sound synchro-
nous interface, proven correct on top of the asynchronous
interface below. Note how we use a variable others to stand
for untouched disk addresses in the logical disk, just as we
did for the physical disk in Figure 3.

Crucial to such a specification are explicit connections
between address spaces. In Figure 4, we use a predicate
log_rep, whose definition we elide here, but which cap-
tures how to map a higher-level state into a set of permis-
sible lower-level states. For this example of a logging layer,
the predicate maps a “virtual” disk into a “physical” disk
that includes a log. Such predicates may take additional
arguments, as with the NoTxn argument that we use here
to indicate that the logging layer is in a quiescent state,
between transactions. This technique for connecting logi-
cal layers generalizes to stacks of several layers, as naturally
appear in a file system.

The crash condition of atomic_two_write, from Figure 4,
describes all of the states in which atomic_two_write
could crash using log_intact(d1, d2), which stands
for all possible log_rep states that recover to transaction

SPEC atomic_two_write(a1, v1, a2, v2)
PRE disk: log_rep(NoTxn, start_state)

start_state: a1 � vx � a2 � vy � others
POST disk: log_rep(NoTxn, new_state)

new_state: a1 � v1 � a2 � v2 � others
CRASH disk: log_intact(start_state, new_state)

Figure 4. Specification for atomic_two_write.

SPEC log_recover()

PRE disk: log_intact(last_state, committed_state)

POST disk: log_rep(NoTxn, last_state) ∨
log_rep(NoTxn, committed_state)

CRASH disk: log_intact(last_state, committed_state)

Figure 5. Specification of log_recover.

research highlights

80 COMMUNICATIONS OF THE ACM | APRIL 2017 | VOL. 60 | NO. 4

shows an example of this for a simple procedure; much
of this chaining is automated in CHL. The crash condi-
tion for a procedure is the disjunction (i.e., “or”) of the
crash conditions of all components of that procedure,
as illustrated by the red arrows in Figure 7. Finally, prov-
ing the correctness of a procedure together with its recov-
ery function requires proving that the procedure’s crash
condition implies the recovery precondition, and that
recovery itself is idempotent.

4. PROTOTYPE IMPLEMENTATION
The implementation follows the organization shown in
Figure 1. FSCQ and CHL are implemented using Coq, which
provides a single programming language for implementa-
tions, specifications, and proofs. Figure 8 breaks down the
source code of FSCQ and CHL. Because Coq provides a sin-
gle language, proofs are interleaved with source code and
are difficult to separate. The development effort took several
researchers about a year and a half; most of it was spent on
proofs and specifications. Checking the proofs takes 11 h on
an Intel i7-3667U 2.00 GHz CPU with 8 GB DRAM. The proofs
are complete; we used Coq’s Print Assumptions com-
mand to verify that FSCQ did not introduce any unproven
axioms or assumptions.

CHL. CHL is implemented as a domain-specific lan-
guage inside of Coq, much like a macro language (or, in
the more technical language of proof assistants, we use a
shallow embedding). We specified the semantics of this
language and proved that it is sound. For example, we
proved the standard Hoare-logic specifications for the for
and if combinators. We also proved the specifications of
disk_read, disk_write (whose spec is in Figure 3),
and disk_sync manually, starting from CHL’s execution
and crash model. Much of the automation (e.g., the chain-
ing of pre- and postconditions) is implemented using
Ltac, Coq’s domain-specific language for proof search.

FSCQ. We implemented FSCQ also inside of Coq, writ-
ing the specifications using CHL. We proved that the imple-
mentation obeys the specifications, starting from the basic
operations in CHL. FSCQ’s write-ahead log simplified speci-
fication and implementation tremendously, because much

or neither was. The special ret variable indicates whether
the system reached a completed or a recovered state
and in this case enables callers of atomic_two_write
to conclude that, if atomic_two_write completed with-
out crashes, it updated both blocks (i.e., updating none
of the blocks is allowed only if the system crashed and
recovered).

Note that distinguishing the completed and recovered
states allows the specification to state stronger properties
for completion than recovery. Also note that the recovery-
execution version of atomic_two_write does not have
a crash condition: if the computer crashes, it will run
log_recover again, and the specification describes what
happens when the computer eventually stops crashing and
log_recover can run to completion.

In this example, the recovery procedure is just log_
recover, but the recovery procedure of a system built on
top of the transaction system may be composed of several
recovery procedures. For example, recovery in a file system
consists of first reading the superblock from disk to locate
the log and then running log_recover.

3.5. Proving
In order to prove the correctness of a procedure, CHL
follows the standard Hoare-logic approach of decompos-
ing the procedure into smaller units (e.g., control-flow
constructs or lower-level functions with already-proven
specifications) and chaining their pre- and postcondi-
tions according to the procedure’s control flow. Figure 7

log_recover

PRE

POST

RECOVER

if bnum >= NDIRECT:
 indirect = log_read(inode.blocks[NDIRECT])
 return indirect[bnum - NDIRECT]
else:
 return inode.blocks[bnum]

if

log_read

return

return

Figure 7. Example control flow of a CHL procedure that looks up the address of a block in an inode, with support for indirect blocks. (The
actual code in FSCQ checks for some additional error cases.) Gray boxes represent the specifications of procedures. The dark red box
represents the recovery procedure. Green and pink boxes represent preconditions and crash conditions, respectively. Blue boxes represent
postconditions. Dashed arrows represent logical implication.

SPEC atomic_two_write(a1, v1, a2, v2) � log_recover()
PRE disk: log_rep(NoTxn, start_state)

start_state: a1 � vx � a2 � vy � others
POST disk: log_rep(NoTxn, new_state) ∨

(ret = RECOVERED ∧ log_rep(NoTxn, start_state))
new_state: a1 � v1 � a2 � v2 � others

Figure 6. Specification for atomic_two_write with recovery. The 
operator indicates the combination of a regular procedure and a
recovery procedure.

APRIL 2017 | VOL. 60 | NO. 4 | COMMUNICATIONS OF THE ACM 81

with this by reasoning about how many writes each transac-
tion can generate and ensuring that the log has sufficient
space before starting a transaction. We have not done this
in FSCQ yet, although it should be possible to expose the
number of available log entries in the log’s representation
invariant. Instead, we allow log_commit to return an error,
in which case the entire transaction (e.g., system call) aborts
and returns an error.

5. EVALUATION
To evaluate FSCQ, this section answers several questions:

•	 Is FSCQ complete enough for realistic applications, and
can it achieve reasonable performance? (Section 5.1)

•	 What kinds of bugs do FSCQ’s theorems preclude?
(Section 5.2)

•	 Does FSCQ recover from crashes? (Section 5.3)
•	 How difficult is it to build and evolve the code and

proofs for FSCQ? (Section 5.4)

5.1. Application performance
FSCQ is complete enough that we can use FSCQ for soft-
ware development, running a mail server, etc. For exam-
ple, we have used FSCQ with the GNU coreutils (ls, grep,
etc.), editors (vim and emacs), software development
tools (git, gcc, make, etc.), and running a qmail-like
mail server. Applications that, for instance, use extended
attributes or create very large files do not work on FSCQ,
but there is no fundamental reason why they could not be
made to work.

Experimental setup. We used a set of applications rep-
resenting typical software development: cloning a Git
repository, compiling the sources of the xv6 file system and
the LFS benchmark31 using make, running the LFS bench-
mark, and deleting all of the files to clean up at the end. We
also run mailbench, a qmail-like mail server from the sv6
operating system.7 This models a real mail server, where
using FSCQ would ensure email is not lost even in case of
crashes.

We compare FSCQ’s performance to two other file sys-
tems: the Linux ext4 file system and the file system from the
xv6 operating system (chosen because its design is similar to
FSCQ’s). We modified xv6 to use asynchronous disk writes
and ported the xv6 file system to FUSE so that we can run it
in the same way as FSCQ. Finally, to evaluate the overhead of
FUSE, we also run the experiments on top of ext4 mounted
via FUSE.

To make a meaningful comparison, we run the file sys-
tems in synchronous mode; that is, every system call com-
mits to disk before returning. (Disk writes within a system
call can be asynchronous, as long as they are synced at
the end.) For FSCQ and xv6, this is the standard mode of
operation. For ext4, we use the data=journal and sync
options. Although this is not the default mode of operation
for ext4, the focus of this evaluation is on whether FSCQ can
achieve good performance for its design, not whether its
simple design can match that of a sophisticated file system
like ext4. To give a sense of how much performance can be
obtained through further optimizations or spec changes,

of the detailed reasoning about crashes is localized in the
write-ahead log.

FSCQ file server. We produced running code by using
Coq’s extraction mechanism to generate equivalent
Haskell code from our Coq implementation. We wrote a
driver program in Haskell (400 lines of code) along with
an efficient Haskell reimplementation of fixed-size words
and disk-block operations (350 more lines of Haskell).
The extracted code, together with this driver and word
library, allows us to efficiently execute our certified
implementation.

To allow applications to use FSCQ, we exported FSCQ as
a FUSE file system, using the Haskell FUSE bindings2 in our
Haskell FSCQ driver. We mount this FUSE FSCQ file system
on Linux, allowing Linux applications to use FSCQ without
any modifications. Compiling the Coq and Haskell code
to produce the FUSE executable, without checking proofs,
takes a little under 2 min.

Limitations. Although extraction to Haskell simplifies
the process of generating executable code from our Coq
implementation, it adds the Haskell compiler and runtime
into FSCQ’s trusted computing base. In other words, a bug
in the Haskell compiler or runtime could subvert any of
the guarantees that we prove about FSCQ. We believe this
is a reasonable trade-off, since our goal is to certify higher-
level properties of the file system, and other projects have
shown that it is possible to extend certification all the way
to assembly.6, 15, 22

Another limitation of the FSCQ prototype lies in dealing
with in-memory state in Coq, which is a functional language.
CHL’s execution model provides a mutable disk but gives no
primitives for accessing mutable memory. Our approach is
to pass an in-memory state variable explicitly through all
FSCQ functions. That variable contains the current buffer-
cache state (a map from address to cached block value), as
well as the current transaction state, if present (an in-memory
log of blocks written in the current transaction). In the
future, we want to support multiprocessors where several
threads share a mutable buffer cache, and we will address
this limitation.

A limitation of FSCQ’s write-ahead log is that it does
not guarantee how much log space is available to commit
a transaction; if a transaction performs too many writes,
log_commit can return an error. Some file systems deal

Component Lines of code

Fixed-width words 2,709
CHL infrastructure 5,895
Proof automation 2,304
On-disk data structures 7,571
Buffer cache 662
Write-ahead logging 3,191
Bitmap allocator 441
Inodes and files 3,317
Directories 4,451
FSCQ’s top-level API 1,198

31,739Total

Figure 8. Combined lines of code and proof for FSCQ components.

research highlights

82 COMMUNICATIONS OF THE ACM | APRIL 2017 | VOL. 60 | NO. 4

5.2. Bug discussion
To understand whether FSCQ eliminates real problems
that arise in current file systems, we consider broad cat-
egories of bugs that have been found in real-world file sys-
tems24, 38 and discuss whether FSCQ’s theorems eliminate
similar bugs:

1.  Violating file or directory invariants, such as all link
counts adding up36 or the absence of directory cycles.26

2.  Improper handling of unexpected corner cases, such
as running out of blocks during rename.13

3.  Mistakes in logging and recovery logic, such as not
issuing disk writes and syncs in the right order.20

4.  Misusing the logging API, such as freeing an indirect
block and clearing the pointer to it in different
transactions.19

5.  Low-level programming errors, such as integer over-
flows21 or double frees.4

6.  Resource allocation bugs, such as losing disk blocks37
or returning ENOSPC when there is available space.27

7.  Returning incorrect error codes.5

8.  Bugs due to concurrent execution of system calls, such
as races between two threads allocating blocks.25

Some categories of bugs (#1–5) are eliminated by FSCQ’s
theorems and proofs. For example, FSCQ’s representation
invariant for the entire file system enforces a tree shape for
it, and the specification guarantees that it will remain a tree
(without cycles) after every system call.

With regards to resource allocation (#6), FSCQ guaran-
tees resources are never lost, but our prototype’s specifi-
cation does not require that the system be out of resources
in order to return an out-of-resource error. Strengthening
the specification (and proving it) would eliminate this
class of bugs.

Incorrect error codes (#7) can be a problem for our
FSCQ prototype in cases where we did not specify what
exact code (e.g., EINVAL or ENOTDIR) should be returned.
Extending the specification to include specific error codes
could avoid these bugs, at the cost of more complex speci-
fications and proofs. On the other hand, FSCQ can never
have a bug where an operation fails without an error code
being returned.

we measure ext4 in three additional configurations: the
journal_async_commit mode, which uses checksums
to commit in one disk sync instead of two (“ext4-journal-
async” in our experiments); the data=ordered mode,
which is incompatible with journal_async_commit
(“ext4-ordered”); and the default data=ordered and
async mode, which does not sync to disk on every system
call (“ext4-async”).

We ran all of these experiments on a quad-core Intel
i7-3667U 2.00 GHz CPU with 8 GB DRAM running Linux
3.19. The file system was stored on a separate partition
on an Intel SSDSCMMW180A3L flash SSD. Running
the experiments on an SSD ensures that potential file-
system CPU bottlenecks are not masked by a slow rota-
tional disk. We compiled FSCQ’s Haskell code using
GHC 7.10.2.

Results. The results of running our experiments are
shown in Figure 9. The first conclusion is that FSCQ’s per-
formance is close to that of the xv6 file system. The small gap
between FSCQ and xv6 is due to the fact that FSCQ’s Haskell
implementation uses about four times more CPU time than
xv6’s. This can be reduced by generating C or assembly code
instead of Haskell. Second, FUSE imposes little overhead,
judging by the difference between ext4 and ext4-fuse. Third,
both FSCQ and xv6 lag behind ext4. This is due to the fact
that our benchmarks are bottlenecked by syncs to the SSD,
and that ext4 has a more efficient logging design that defers
applying the log contents until the log fills up, instead of at
each commit. As a result, ext4 can commit a transaction with
two disk syncs, compared to four disk syncs for FSCQ and
xv6. For example, mailbench requires 10 transactions per
message, and the SSD can perform a sync in about 2.8 ms.
This matches the observed performance of ext4 (64 ms per
message) and xv6 and FSCQ (103 and 118 ms per message,
respectively).

Finally, there is room for even further optimizations:
ext4’s journal_async_commit commits with one disk
sync instead of two, achieving almost twice the through-
put in some cases; data=ordered avoids writing file data
twice, achieving almost twice the throughput in other cases;
and asynchronous mode achieves much higher throughput
by avoiding disk syncs altogether (at the cost of not persist-
ing data right away).

 0

 5

 10

 15

 20

 25

git clone make xv6 make lfs largefile smallfile cleanup mailbench

R
un

ni
ng

 t
im

e
(s

)

fscq
xv6
ext4-fuse
ext4
ext4-journal-async
ext4-ordered
ext4-async

Figure 9. Running time for each phase of the application benchmark suite and for delivering 200 messages with mailbench.

APRIL 2017 | VOL. 60 | NO. 4 | COMMUNICATIONS OF THE ACM 83

of code in the CHL infrastructure and changing over half
of the implementations and proofs for the write-ahead log.
However, layers above the log did not require any changes,
since the log provided the same synchronous disk abstrac-
tion in both cases.

Buffer cache. We added a buffer cache to FSCQ after
we had already built the write-ahead log and several lay-
ers above it. Since Coq is a pure functional language,
keeping buffer-cache state required passing the current
buffer-cache object to and from all functions. Incorporating
the buffer cache required changing about 300 lines of
code and proof in the log, to pass around the buffer-
cache state, to access disk via the buffer cache and to
reason about disk state in terms of buffer-cache invariants.
We also had to make similar straightforward changes to
about 600 lines of code and proof for components above
the log.

Optimizing log layout. The initial design of FSCQ’s write-
ahead log used one disk block to store the length of the on-
disk log and another block to store a commit bit, indicating
whether log recovery should replay the log contents after a
crash. Once we introduced asynchronous writes, storing
these fields separately necessitated an additional disk sync
between writing the length field and writing the commit bit.
To avoid this sync, we modified the logging protocol slightly:
the length field was now also the commit bit, and the log is
applied on recovery if the length is nonzero. Implementing
this change required modifying about 50 lines of code and
about 100 lines of proof.

5.5. Evaluation summary
Although FSCQ is not as complete and high-performance as
today’s high-end file systems, our results demonstrate that
this is largely due to FSCQ’s simple design. Furthermore,
the case studies in Section 5.4 indicate that one can improve
FSCQ incrementally. In future work, we hope to improve
FSCQ’s logging to batch transactions and to log only meta-
data; we expect this will bring FSCQ’s performance closer
to that of ext4’s logging. The one exception to incremental
improvement is multiprocessor support, which may require
global changes and is an interesting direction for future
research.

6. CONCLUSION
This paper’s contributions are CHL and a case study of
applying CHL to build FSCQ, the first certified crash-safe
file system. CHL allowed us to concisely and precisely
specify the expected behavior of FSCQ. Via this verification
approach, we arrive at a machine-checked proof that FSCQ
avoids bugs that have a long history of causing data loss in
previous file systems. For this kind of critical infrastructure,
the cost of proving seems a reasonable price to pay. We hope
that others will find CHL useful for constructing crash-safe
storage systems.

Acknowledgments
The authors would like to thank Nathan Beckmann,
Butler Lampson, Robert Morris, and the IronClad team
for insightful discussions and feedback. The author would

Multiprocessor bugs (#8) are out of scope for our FSCQ
prototype, because it does not support multithreading.

5.3. Crash recovery
We proved that FSCQ implements its specification, but
in principle it is possible that the specification is incom-
plete or that our unproven code (e.g., the FUSE driver) has
bugs. To do an end-to-end check, we ran two experiments.
First, we ran fsstress from the Linux Test Project, which
issues random file-system operations; this did not uncover
any problems. Second, we experimentally induced crashes
and verified that each resulting disk image after recovery
is consistent.

In particular, we created an empty file system using
mkfs, mounted it using FSCQ’s FUSE interface, and then
ran a workload on the file system. The workload creates two
files, writes data to the files, creates a directory and a sub-
directory under it, moves a file into each directory, moves
the subdirectory to the root directory, appends more data
to one of the files, and then deletes the other file. During
the workload, we recorded all disk writes and syncs. After
the workload completed, we unmounted the file system and
constructed all possible crash states. We did this by taking
a prefix of the writes up to some sync, combined with every
possible subset of writes from that sync to the next sync. For
the workload described above, this produced 320 distinct
crash states.

For each crash state, we remounted the file system (which
runs the recovery procedure) and then ran a script to exam-
ine the state of the file system, looking at directory structure,
file contents, and the number of free blocks and inodes. For
the above workload, this generates just 10 distinct logical
states (i.e., distinct outputs from the examination script).
Based on a manual inspection of each of these states, we
conclude that all of them are consistent with what a POSIX
application should expect. This suggests that FSCQ’s speci-
fications, as well as the unverified components, are likely to
be correct.

5.4. Development effort
The final question is, how much effort is involved in
developing FSCQ? One metric is the size of the FSCQ code
base, reported in Figure 8; FSCQ consists of about 30,000
lines of code. In comparison, the xv6 file system is about
3000 lines of C code, so FSCQ is about 10× larger, but
this includes a significant amount of CHL infrastructure,
including libraries and proof machinery, which is not
FSCQ-specific.

A more interesting question is how much effort is required
to modify FSCQ, after an initial version has been developed
and certified. Does adding a new feature to FSCQ require
reproving everything, or is the work commensurate with the
scale of the modifications required to support the new fea-
ture? To answer this question, the rest of this section presents
several case studies, where we had to add a significant feature
to FSCQ after the initial design was already complete.

Asynchronous disk writes. We initially developed FSCQ to
operate with synchronous disk writes. Implementing asyn-
chronous disk writes required changing about 1000 lines

research highlights

84 COMMUNICATIONS OF THE ACM | APRIL 2017 | VOL. 60 | NO. 4

also like to thank the anonymous reviewers for their com-
ments, and to our SOSP shepherd Herbert Bos and CACM
Research Highlights editor Martin Abadi. This research was
supported, in part, by NSF awards CNS-1053143 and CCF-
1253229, Google, and CyberSecurity@CSAIL.�

References

Tej Chajed, Haogang Chen, Adam
Chlipala, M. Frans Kaashoek, Nickolai
Zeldovich, and Daniel Ziegler ({tchajed,

dmz}@mit.edu, {hchen, adamc, kaashoek,
nickolai}@csail.mit.edu), MIT CSAIL,
Cambridge, MA.

Copyright held by owners/authors.

	25.	 Manana, F. Btrfs: Fix race between
writing free space cache and
trimming, Dec. 2014. http://git.kernel.
org/cgit/linux/kernel/git/stable/
linux-stable.git/commit/?id=55507
ce3612365a5173dfb080a4baf45d1
ef8cd1.

	26.	 Mason, C. Btrfs: Prevent loops in
the directory tree when creating
snapshots, Nov. 2008. http://git.
kernel.org/cgit/linux/kernel/git/
stable/linux-stable.git/commit/
?id=ea9e8b11bd1252dcbc23af
efcf1a52ec6aa3c113.

	27.	 Morton, A. [PATCH] ext2/ext3-
ENOSPC bug, Mar. 2004. https://
git.kernel.org/cgit/linux/kernel/
git/tglx/history.git/commit/?id=
5e9087ad3928c9d80cc62b5
83c3034f864b6d315.

	28.	 Ntzik, G., da Rocha Pinto, P., Gardner, P.
Fault-tolerant resource reasoning.
In Proceedings of the 13th Asian
Symposium on Programming
Languages and Systems (APLAS)
(Pohang, South Korea, Nov.–Dec.
2015).

	29.	 Pillai, T.S., Chidambaram, V.,
Alagappan, R., Al-Kiswany, S.,
Arpaci-Dusseau, A.C., Arpaci-
Dusseau, R.H. All file systems are
not created equal: On the complexity
of crafting crash-consistent
applications. In Proceedings of
the 11th Symposium on Operating
Systems Design and Implementation
(OSDI) (Broomfield, CO, Oct. 2014),
433–448.

	30.	 Reynolds, J.C. Separation logic:
A logic for shared mutable data
structures. In Proceedings of the 17th
Annual IEEE Symposium on Logic
in Computer Science (Copenhagen,
Denmark, July 2002), 55–74.

	31.	 Rosenblum, M., Ousterhout, J.
The design and implementation
of a log-structured file system.
In Proceedings of the 13th ACM
Symposium on Operating Systems
Principles (SOSP) (Pacific Grove, CA,
Oct. 1991), 1–15.

	32.	 Schellhorn, G., Ernst, G., Pfahler, J.,
Haneberg, D., Reif, W. Development
of a verified flash file system. In
Proceedings of the ABZ Conference
(Toulouse, France, June 2014).

	33.	 Schlichting, R.D., Schneider, F.B.
Fail-stop processors: An approach to
designing fault-tolerant computing
systems. ACM Trans. Comput. Syst. 1,
3 (1983), 222–238.

	34.	 Tweedie, S.C. Journaling the Linux
ext2fs filesystem. In Proceedings of
the 4th Annual LinuxExpo (Durham,
NC, May 1998).

	35.	 Wang, X., Lazar, D., Zeldovich, N.,
Chlipala, A., Tatlock, Z. Jitk: A
trustworthy in-kernel interpreter
infrastructure. In Proceedings of
the 11th Symposium on Operating
Systems Design and Implementation
(OSDI) (Broomfield, CO, Oct. 2014),
33–47.

	36.	 Wong, D.J. ext4: Fix same-dir
rename when inline data directory
overflows, Aug. 2014. https://git.
kernel.org/cgit/linux/kernel/git/
stable/linux-stable.git/commit/?id=
d80d448c6c5bdd32605b78a
60fe8081d82d4da0f.

	37.	 Xie, M. Btrfs: Fix broken free space
cache after the system crashed, June
2014. https://git.kernel.org/cgit/linux/
kernel/git/stable/linux-stable.git/com
mit/?id=e570fd27f2c5d7eac3876bccf
99e9838d7f911a3.

	38.	 Yang, J., Twohey, P., Engler, D.,
Musuvathi, M. eXplode: A lightweight,
general system for finding
serious storage system errors. In
Proceedings of the 7th Symposium
on Operating Systems Design and
Implementation (OSDI) (Seattle, WA,
Nov. 2006), 131–146.

	39.	 Zheng, M., Tucek, J., Huang, D., Qin, F.,
Lillibridge, M., Yang, E.S., Zhao, B.W.,
Singh, S. Torturing databases for
fun and profit. In Proceedings of
the 11th Symposium on Operating
Systems Design and Implementation
(OSDI) (Broomfield, CO, Oct. 2014),
449–464.

	 1.	 Amani, S., Hixon, A., Chen, Z.,
Rizkallah, C., Chubb, P., O’Connor, L.,
Beeren, J., Nagashima, Y., Lim, J.,
Sewell, T., Tuong, J., Keller, G.,
Murray, T., Klein, G., Heiser, G.
Cogent: Verifying high-assurance
file system implementations. In
Proceedings of the 21th International
Conference on Architectural Support
for Programming Languages and
Operating Systems (ASPLOS)
(Atlanta, GA, Apr. 2016), 175–188.

	 2.	 Bobbio, J. et al. Haskell bindings for
the FUSE library, 2014. https://github.
com/m15k/hfuse.

	 3.	 Chen, H., Ziegler, D., Chajed, T.,
Chlipala, A., Kaashoek, M.F.,
Zeldovich, N. Using Crash Hoare Logic
for certifying the FSCQ file system.
In Proceedings of the 25th ACM
Symposium on Operating Systems
Principles (SOSP) (Monterey, CA,
Oct. 2015).

	 4.	 Chinner, D. xfs: Fix double free in
xlog_recover_commit_trans, Sept.
2014. http://git.kernel.org/cgit/linux/
kernel/git/stable/linux-stable.git/com
mit/?id=88b863db97a18a04c90ebd5
7d84e1b7863114dcb.

	 5.	 Chinner, D. xfs: xfs_dir_fsync() returns
positive errno, May 2014. https://
git.kernel.org/cgit/linux/kernel/git/
stable/linux-stable.git/commit/
?id=43ec1460a2189fbee87980dd
3d3e64cba2f11e1f.

	 6.	 Chlipala, A. Mostly-automated
verification of low-level programs
in computational separation
logic. In Proceedings of the 2011
ACM SIGPLAN Conference on
Programming Language Design
and Implementation (PLDI)
(San Jose, CA, June 2011),
234–245.

	 7.	 Clements, A.T., Kaashoek, M.F.,
Zeldovich, N., Morris, R.T., Kohler, E.
The scalable commutativity rule:
Designing scalable software for
multicore processors. In Proceedings
of the 24th ACM Symposium on
Operating Systems Principles
(SOSP) (Farmington, PA, Nov.
2013), 1–17.

	 8.	 Coq development team. The Coq
Proof Assistant Reference Manual,
Version 8.5pl1. INRIA, Apr. 2016.
http://coq.inria.fr/distrib/current/
refman/.

	 9.	 Cox, R., Kaashoek, M.F., Morris, R.T.
Xv6, a simple Unix-like teaching
operating system, 2014. http://pdos.
csail.mit.edu/6.828/2014/xv6.html.

	10.	 Ernst, G., Pfahler, J., Schellhorn, G.,
Reif, W. Inside a verified flash file
system: Transactions & garbage
collection. In Proceedings of the
7th Working Conference on Verified
Software: Theories, Tools and
Experiments (San Francisco, CA,
July 2015).

	11.	 Freitas, L., Woodcock, J., Butterfield, A.
POSIX and the verification grand
challenge: A roadmap. In Proceedings
of 13th IEEE International
Conference on Engineering of
Complex Computer Systems (Belfast,
Northern Ireland, Mar.–Apr. 2008),
153–162.

	12.	 FUSE: Filesystem in userspace, 2013.
http://fuse.sourceforge.net/.

	13.	 Goldstein, A. ext4: Handle errors
in ext4_rename, Mar. 2011. https://
git.kernel.org/cgit/linux/kernel/git/
stable/linux-stable.git/commit/?id=ef
6078930263bfcdcfe4dddb2cd85254b
4cf4f5c.

	14.	 Gray, J. Notes on data base operating
systems. In Operating Systems: An
Advanced Course, R. Bayer, R.M. Graham,
and G. Seegmuller, eds. Springer-Verlag,
London, UK, 1978, 393–481.

	15.	 Hawblitzel, C., Howell, J., Lorch, J.R.,
Narayan, A., Parno, B., Zhang, D.,
Zill, B. Ironclad Apps: End-to-end
security via automated full-system
verification. In Proceedings of the
11th Symposium on Operating
Systems Design and Implementation
(OSDI) (Broomfield, CO, Oct. 2014),
165–181.

	16.	 Hoare, C.A.R. An axiomatic basis
for computer programming.
Commun. ACM 12 10 (Oct. 1959),
576–580.

	17.	 IEEE (The Institute of Electrical
and Electronics Engineers) and The
Open Group. The Open Group base
specifications issue 7, 2013 edition
(POSIX.1–2008/Cor 1–2013), Apr.
2013.

	18.	 Joshi, R., Holzmann, G.J. A mini
challenge: Build a verifiable
filesystem. Formal Aspects
Comput. 19, 2 (June 2007),
269–272.

	19.	 Kara, J. ext3: Avoid filesystem
corruption after a crash under heavy
delete load, July 2010. https://git.
kernel.org/cgit/linux/kernel/git/
stable/linux-stable.git/commit/?id=f2
5f624263445785b94f39739a6339ba
9ed3275d.

	20.	 Kara, J. jbd2: Issue cache flush after
checkpointing even with internal
journal, Mar. 2012. http://git.kernel.
org/cgit/linux/kernel/git/stable/
linux-stable.git/commit/?id=79feb5
21a44705262d15cc819a4117a447
b11ea7.

	21.	 Kara, J. ext4: Fix overflow when
updating superblock backups after
resize, Oct. 2014. http://git.kernel.org/
cgit/linux/kernel/git/stable/
linux-stable.git/commit/?id=9378c
6768e4fca48971e7b6a9075bc006
eda981d.

	22.	 Klein, G., Elphinstone, K., Heiser, G.,
Andronick, J., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Norrish, M.,
Kolanski, R., Sewell, T., Tuch, H.,
Winwood, S. seL4: Formal verification
of an OS kernel. In Proceedings of
the 22nd ACM Symposium on
Operating Systems Principles
(SOSP) (Big Sky, MT, Oct. 2009),
207–220.

	23.	 Leroy, X. Formal verification of a
realistic compiler. Commun.
ACM 52, 7 (July 2009), 107–115.

	24.	 Lu, L., Arpaci-Dusseau, A.C., Arpaci-
Dusseau, R.H., Lu, S. A study of Linux
file system evolution. In Proceedings
of the 11th USENIX Conference on
File and Storage Technologies
(FAST) (San Jose, CA, Feb.
2013), 31–44.

