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Abstract
FSCQ is the first file system with a machine-checkable proof 
that its implementation meets a specification, even in the 
presence of fail-stop crashes. FSCQ provably avoids bugs that 
have plagued previous file systems, such as performing disk 
writes without sufficient barriers or forgetting to zero out 
directory blocks. If a crash happens at an inopportune time, 
these bugs can lead to data loss. FSCQ’s theorems prove 
that, under any sequence of crashes followed by reboots, 
FSCQ will recover its state correctly without losing data.

To state FSCQ’s theorems, this paper introduces the 
Crash Hoare logic (CHL), which extends traditional Hoare 
logic with a crash condition, a recovery procedure, and logical 
address spaces for specifying disk states at different abstrac-
tion levels. CHL also reduces the proof effort for developers 
through proof automation. Using CHL, we developed, speci-
fied, and proved the correctness of the FSCQ file system. 
Although FSCQ’s design is relatively simple, experiments 
with FSCQ as a user-level file system show that it is sufficient 
to run Unix applications with usable performance. FSCQ’s 
specifications and proofs required significantly more work 
than the implementation, but the work was manageable 
even for a small team of a few researchers.

1. INTRODUCTION
This paper describes Crash Hoare logic (CHL), which allows 
developers to write specifications for crash-safe storage sys-
tems and also prove them correct. “Correct” means that, 
if a computer crashes due to a power failure or other fail-
stop fault and subsequently reboots, the storage system 
will recover to a state consistent with its specification (e.g., 
POSIX17). For example, after recovery, either all disk writes 
from a file-system call will be on disk, or none will be. Using 
CHL we write a simple specification for a subset of POSIX 
and build the FSCQ certified file system, which comes with a 
machine-checkable proof that its implementation matches 
the specification.

Proving the correctness of a file system implementation is 
important, because existing file systems have a long history 
of bugs both in normal operation and in handling crashes.24 
Reasoning about crashes is especially challenging because 
it is difficult for the file-system developer to consider all 
possible points where a crash could occur, both while a file-
system call is running and during the execution of recovery 
code. Often, a system may work correctly in many cases, but 
if a crash happens at a particular point between two specific 
disk writes, then a problem arises.29, 39

Most approaches to building crash-safe file systems fall 
roughly into three categories (see the SOSP paper3 for a more 
in-depth discussion of related work): testing, program analy-
sis, and model checking. Although they are effective at find-
ing bugs in practice, none of them can guarantee the absence 
of crash-safety bugs in actual implementations. This paper 
focuses precisely on this issue: helping developers build file 
systems with machine-checkable proofs that they correctly 
recover from crashes at any point.

Researchers have used theorem provers for certifying 
real-world systems such as compilers,23 small kernels,22 ker-
nel extensions,35 and simple remote servers.15 Some certifi-
cation projects1, 10, 11, 18, 28, 32 have even targeted file systems, 
as we do, but in each case either the file system was not 
complete, executable, and ready to run on a real operating 
system; or its proof did not consider crashes. Reasoning 
about crash-free executions typically involves considering 
the states before and after some operation. Reasoning about 
crashes is more complicated because crashes can expose 
intermediate states of an operation.

Building an infrastructure for reasoning about file-
system crashes poses several challenges. Foremost among 
those challenges is the need for a specification framework 
that allows the file-system developer to formalize the sys-
tem behavior under crashes. Second, it is important that 
the specification framework allows for proofs to be auto-
mated, so that one can make changes to a specification and 
its implementation without having to redo all of the proofs 
manually. Third, the specification framework must be able 
to capture important performance optimizations, such as 
asynchronous disk writes, so that the implementation of a 
file system has acceptable performance. Finally, the specifi-
cation framework must allow modular development: devel-
opers should be able to specify and verify each component 
in isolation and then compose verified components. For 
instance, once a logging layer has been implemented, file-
system developers should be able to prove end-to-end crash 
safety in the inode layer simply by relying on the fact that 
logging ensures atomicity; they should not need to consider 
every possible crash point in the inode code.

CHL addresses these challenges by allowing program-
mers to specify what invariants hold in case of crashes and 

The original version of this paper is entitled “Using Crash 
Hoare Logic for Certifying the FSCQ File System” and was 
published in the Proceedings of the 25th ACM Symposium 
on Operating Systems Principles (SOSP ’15).3
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by incorporating the notion of a recovery procedure that 
runs after a crash. CHL supports the construction of modu-
lar systems through a notion of logical address spaces. CHL 
also allows for a high degree of proof automation. Using 
CHL we specified and proved correct the FSCQ file system, 
which includes a simple write-ahead log and which uses 
asynchronous disk writes.

The next section of this article gives an overview of our 
system architecture, including implementation and proof. 
Then we introduce CHL, our approach to verifying storage 
programs that may crash. Afterward, we discuss our proto-
type file-system implementation FSCQ that we verified with 
CHL, and we evaluate it in terms of performance, correct-
ness, and other desirable qualities.

2. SYSTEM OVERVIEW
We have implemented the CHL specification framework 
with the widely used Coq proof assistant,8 which provides a 
single programming language for both proof and implemen-
tation. The source code is available at https://github.com/
mit-pdos/fscq. Figure 1 shows the components involved in 
the implementation. CHL is a small specification language 
embedded in Coq that allows a file-system developer to write 
specifications that include crash conditions and recovery pro-
cedures, and to prove that implementations meet these spec-
ifications. We have stated the semantics of CHL and proven 
it sound in Coq.

We implemented and certified FSCQ using CHL. That 
is, we wrote specifications for a subset of the POSIX system 

calls using CHL, implemented those calls inside of Coq, and 
proved that the implementation of each call meets its speci-
fication. We devoted substantial effort to building reusable 
proof automation for CHL. However, writing specifications 
and proofs still took a significant amount of time, compared 
to the time spent writing the implementation.

As a standard of completeness for FSCQ, we aimed for the 
same features as the xv6 file system,9 a teaching operating 
system that implements the Unix v6 file system with write-
ahead logging. FSCQ supports fewer features than today’s 
Unix file systems; for example, it lacks support for multi-
processors and deferred durability (i.e., fsync). However, it 
provides the core POSIX file-system calls, including support 
for large files using indirect blocks, nested directories, and 
rename.

Using Coq’s extraction feature, we do automatic transla-
tion of the Coq code for FSCQ into a Haskell program. We 
run this generated implementation combined with a small 
(uncertified) Haskell driver as a FUSE12 user-level file server. 
This implementation strategy allows us to run unmodified 
Unix applications but pulls in Haskell, our Haskell driver, 
and the Haskell FUSE library as trusted components.

3. CRASH HOARE LOGIC
Our goal is to allow developers to certify the correctness 
of a storage system formally—that is, to prove that it func-
tions correctly during normal operation and that it recov-
ers properly from any possible crashes. As mentioned in 
the abstract, a file system might forget to zero out the con-
tents of newly allocated directory or indirect blocks, lead-
ing to corruption during normal operation, or it might 
perform disk writes without sufficient barriers, leading to 
disk contents that might be unrecoverable. Prior work has 
shown that even mature file systems in the Linux kernel 
have such bugs during normal operation24 and in crash 
recovery.38

To prove that an implementation meets its specification, 
we must have a way for the developer to declare which behav-
iors are permissible under crashes. To do so, we extend Hoare 
logic,16 where specifications are of the form {P} procedure 
{Q}. Here, procedure could be a sequence of disk operations 
(e.g., read and write), interspersed with computation, that 
manipulates the persistent state on disk, like the implemen-
tation of the rename system call or a lower-level operation 
like allocating a disk block. P corresponds to the precon-
dition that should hold before procedure is run and Q is 
the postcondition. To prove that a specification is correct, 
we must prove that procedure establishes Q, assuming P 
holds before invoking procedure. In our rename system 
call example, P might require that the file system be repre-
sented by some tree t and Q might promise that the resulting 
file system is represented by a modified tree t′ reflecting the 
rename operation.

Hoare logic is insufficient to reason about crashes, 
because a crash may cause procedure to stop at any point 
in its execution and may leave the disk in a state where Q does 
not hold (e.g., in the rename example, the new file name has 
been created already, but the old file name has not yet been 
removed). Furthermore, if the computer reboots, it often 
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Figure 1. Overview of FSCQ’s implementation. Rectangular boxes 
denote source code; rounded boxes denote processes. Shaded boxes 
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runs a recovery procedure (such as fsck) before resuming 
normal operation. Hoare logic does not provide a notion 
that at any point during procedure’s execution, a recovery 
procedure may run. The rest of this section describes how 
CHL extends Hoare logic to handle crashes.

Traditional Hoare logic distinguishes between partial 
correctness, where we prove that terminating programs 
give correct answers, and total correctness, where we also 
prove termination. We use Coq’s built-in termination 
checker to guarantee that our system calls always finish, 
when no crashes occur. However, we model cases where a 
program still runs forever, because it keeps crashing and 
then crashing again during recovery, ad infinitum. For that 
reason, our specifications can be interpreted as total cor-
rectness for crash-free executions and partial correctness 
for crashing executions, which makes sense, since the 
underlying hardware platform refuses to give the program-
mer a way to guarantee normal termination in the presence 
of crashes.

3.1. Example
Many file-system operations must update two or more disk 
blocks atomically. For example, when creating a file, the 
file system must both mark an inode as allocated as well as 
update the directory in which the file is created (to record 
the file name with the allocated inode number). To ensure 
correct behavior under crashes, a common approach is 
to use a write-ahead log. Logging guarantees that, if a file-
system operation crashed while applying its changes to the 
disk, then after a crash, a recovery procedure can finish the 
job by applying the log contents. Write-ahead logging makes 
it possible to avoid the undesirable intermediate state where 
the inode is allocated but not recorded in the directory, 
effectively losing an inode. Many file systems, including 
widely used ones like Linux’s ext4,34 employ logging exactly 
for this reason.

The simple procedure shown in Figure 2 captures the 
essence of file-system calls that must update two or more 
blocks. The procedure performs two disk writes using a 
write-ahead log, which supplies the log_begin, log_commit, 
and log_write APIs. The procedure log_write appends 
a block’s content to an in-memory log, instead of updating 
the disk block in place. The procedure log_commit writes 
the log to disk, writes a commit record, and then copies the 
block contents from the log to the blocks’ locations on disk. 
If this procedure crashes and the system reboots, the recov-
ery procedure runs. The recovery procedure looks for the 
commit record. If there is a commit record, it completes the 
operation by copying the block contents from the log into 
the proper locations and then cleans the log.

If there is no commit record, then the recovery proce-
dure just cleans the log. If there is a crash during recovery, 
then after reboot the recovery procedure runs again. In prin-
ciple, this may happen several times. If the recovery finishes, 
however, then either both blocks have been updated or nei-
ther has. Thus, in the atomic_two_write procedure from 
Figure 2, the write-ahead log guarantees that either both 
writes happen or neither does, no matter when and how 
many crashes happen.

CHL makes it possible to write specifications for proce-
dures such as atomic_two_write and the write-ahead 
logging system, as we will explain in the rest of the section.

3.2. Crash conditions
CHL needs a way for developers to write down predicates 
about disk states, such as a description of the possible inter-
mediate states where a crash could occur. To do this, CHL 
extends Hoare logic with crash conditions, similar in spirit 
to prior work on fail-stop processors33, Section 3 and fault con-
ditions from concurrent work,28 but formalized precisely 
to allow for executable implementations and machine-
checked proofs.

For modularity, CHL should allow reasoning about just 
one part of the disk, rather than having to specify the con-
tents of the entire disk at all times. For example, we want 
to specify what happens with the two blocks that atomic_
two_write updates and not have to say anything about the 
rest of the disk. To do this, CHL employs separation logic,30 
which is a way of combining predicates on disjoint parts of 
a store (in our case, the disk). The basic predicate in sepa-
ration logic is a points-to relation, written as a  v, which 
means that address a has value v. Given two predicates x and 
y, separation logic allows CHL to produce a combined predi-
cate x  y. The  operator means that the disk can be split 
into two disjoint parts, where one satisfies the x predicate, 
and the other satisfies y.

To reason about the behavior of a procedure in the pres-
ence of crashes, CHL allows a developer to capture both 
the state at the end of the procedure’s crash-free execution 
and the intermediate states during the procedure’s execu-
tion in which a crash could occur. For example, Figure 3 
shows the CHL specification for FSCQ’s disk_write. (In 
our implementation of CHL, these specifications are writ-
ten in Coq code; we show here an easier-to-read version.) 
We will describe the precise notation shortly, but for now, 
note that the specification has four parts: the procedure 
about which we are reasoning, disk_write(a, v); the 
precondition, disk: a  〈v0, vs〉  other_blocks; the post-
condition if there are no crashes, disk: a  〈v, [v0]⊕vs〉  
other_blocks; and the crash condition, disk: a  〈v0, vs〉  

def atomic_two_write(a1, v1, a2, v2):
log_begin()
log_write(a1, v1)
log_write(a2, v2)
log_commit()

Figure 2. Pseudocode of atomic_two_write.
SPEC disk_write(a, v)
PRE disk: a � 〈v0, vs〉 � other_blocks
POST disk: a � 〈v, [v0]⊕ vs〉 � other_blocks
CRASH disk: a � 〈v0, vs〉 � other_blocks ∨

a � 〈v, [v0]⊕ vs〉) � other_blocks

Figure 3. Specification for disk_write.
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other_blocks ∨ a  〈v, [v0]⊕vs〉  other_blocks. Moreover, 
note that the crash condition specifies that disk_write 
could crash in two possible states (either before making 
the write or after). In all three logical conditions, other_
blocks stands for the arbitrary contents of all other disk 
blocks beside a, which should be preserved by this opera-
tion, even in case of a crash.

The specification in Figure 3 captures asynchronous 
writes. To do so, CHL models the disk as a (partial) function 
from a block number to a tuple, 〈v, vs〉, consisting of the last-
written value v and a set of previous values vs, any of which 
could appear on disk after a crash. Block numbers greater 
than the size of the disk do not map to anything. Reading 
from a block returns the last-written value, since even if 
there are previous values that might appear after a crash, in 
the absence of a crash a read should return the last write. 
Writing to a block makes the new value the last-written value 
and adds the old last-written value to the set of previous val-
ues. Reading or writing a block number that does not exist 
causes the system to “fail” (as opposed to finishing or crash-
ing). Finally, CHL’s disk model supports a sync operation, 
which forces the disk to flush pending writes to persistent 
storage, modeled in the postcondition for sync by discard-
ing all previous values.

Returning to Figure 3, the disk_write specification 
asserts through the precondition that the address being 
written, a, must be valid (i.e., within the disk’s size), by stat-
ing that address a points to some value 〈v0, vs〉 on disk. The 
specification’s postcondition asserts that the block being 
modified will contain the new value 〈v, [v0]⊕vs〉; that is, 
the new last-written value is v, and v0 is added to the set of 
previous values. The specification also asserts through the 
crash condition that disk_write could crash in a state 
that satisfies a  〈v0, vs〉  other_blocks ∨ a  〈v, [v0]⊕vs〉 
 other_blocks, that is, either the write did not happen  
(a still has 〈v0, vs〉) or it did (a has 〈v, [v0]⊕vs〉). Finally, the 
specification asserts that the rest of the disk is unaffected: 
if other disk blocks satisfied some predicate other_blocks 
before disk_write, they will still satisfy the same predi-
cate afterward.

One subtlety of CHL’s crash conditions is that they 
describe the state of the disk just before the crash occurs, 
rather than just after. Right after a crash, CHL’s disk model 
specifies that each block nondeterministically chooses one 
value from the set of possible values before the crash. For 
instance, the first line of Figure 3’s crash condition says that 
the disk still “contains” all previous writes, represented by 
〈v0, vs〉, rather than a specific value that persisted across the 
crash, chosen out of [v0]⊕vs. This choice of representing 
the state before the crash rather than after the crash allows 
the crash condition to be similar to the pre- and postcondi-
tions. For example, in Figure 3, the state of other blocks just 
before a crash matches the other_blocks predicate, as in the 
pre- and postconditions. However, describing the state after 
the crash would require a more complex predicate (e.g., if 
other_blocks contains unsynced disk writes, the state after 
the crash must choose one of the possible values). Making 
crash conditions similar to pre- and postconditions is good 
for proof automation.

The specification of disk_write captures two impor-
tant behaviors of real disks—that the disk controller can 
defer flushing pending writes to persistent storage and can 
reorder them—in order to achieve good performance. CHL 
could model a simpler synchronous disk by specifying that 
a points to a single value (instead of a set of values) and 
changing the crash condition to say that either a points to 
the new value (a  v) or a points to the old value (a  v0). 
This change would simplify proofs, but this model of a disk 
would be accurate only if the disk were running in synchro-
nous mode with no write buffering, which achieves lower 
performance.

The disk_write specification states that blocks are 
written atomically; that is, after a crash, a block must con-
tain either the last-written value or one of the previous 
values, and partial block writes are not allowed. This is a 
common assumption made by file systems and we believe it 
matches the behavior of many disks in practice. Using CHL, 
we could capture the notion of partial block writes by speci-
fying a more complicated crash condition, but the specifi-
cation shown here matches the common assumption. We 
leave to future work the question of how to build a certified 
file system without that assumption.

Much like other Hoare-logic-based approaches, CHL 
requires developers to write a complete specification for 
every procedure, including internal ones (e.g., allocating 
an object from a free bitmap). This requires stating pre-
cise pre- and postconditions. In CHL, developers must also 
write a crash condition for every procedure. In practice, 
we have found that the crash conditions are often simpler 
to state than the pre- and postconditions. For example, in 
FSCQ, most crash conditions in layers above the log sim-
ply state that there is an active (uncommitted) transaction; 
only the top-level system-call code begins and commits 
transactions.

3.3. Logical address spaces
The above example illustrates how CHL can specify predi-
cates about disk contents, but file systems often need to 
express similar predicates at other levels of abstraction 
as well. Consider the Unix pwrite system call. Its speci-
fication should be similar to disk_write, except that it 
should describe offsets and values within the file’s con-
tents, rather than block numbers and block values on disk. 
Expressing this specification directly in terms of disk con-
tents is tedious. For example, describing pwrite might 
require saying that we allocated a new block from the bit-
map allocator, grew the inode, perhaps allocated an indi-
rect block, and modified some disk block that happens 
to correspond to the correct offset within the file. Writing 
such complex specifications is also error-prone, which 
can result in significant wasted effort in trying to prove an 
incorrect spec.

To capture such high-level abstractions in a concise man-
ner, we observe that many of these abstractions deal with 
logical address spaces. For example, the disk is an address 
space from disk-block numbers to disk-block contents; the 
inode layer is an address space from inode numbers to inode 
structures; each file is a logical address space from offsets 
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states d1 or d2. Using log_intact allows us to capture 
all possible crash states concisely, including states that 
can appear deep inside any procedure that atomic_two_
write might call (e.g., crashes inside log_commit).

3.4. Recovery execution semantics
Crash conditions and address spaces allow us to specify the 
possible states in which the computer might crash in the 
middle of a procedure’s execution. We also need a way to 
reason about recovery, including crashes during recovery.

For example, we want to argue that a transaction pro-
vides all-or-nothing atomicity: if atomic_two_write 
crashes prior to invoking log_commit, none of the calls 
to log_write will be applied; after log_commit returns, 
all of them will be applied; and if atomic_two_write 
crashes during log_commit, either all or none of them will 
take effect. To achieve this property, the transaction system 
must run log_recover after every crash to roll forward 
any committed transaction, including after crashes during 
log_recover itself.

The specification of the log_recover procedure is 
shown in Figure 5. It says that, starting from any state  
matching log_intact(last_state, committed_state),  
log_recover will either roll back the transaction to last_
state or will roll forward a committed transaction to  
committed_state. Furthermore, the fact that log_recover’s 
crash condition implies the precondition indicates that 
log_recover is idempotent, meaning that it can be safely 
restarted after a crash to achieve the same postcondition. 
(Strictly speaking, this sense of idempotence differs from 
the mathematical notion, but follows conventions estab-
lished in early work on fault-tolerant storage systems.14)

To formalize the requirement that log_recover must 
run after a crash, CHL provides a recovery execution seman-
tics. The recovery semantics talks about two procedures exe-
cuting (a normal procedure and a recovery procedure) and 
producing either a failure, a completed state (after finishing 
the normal procedure), or a recovered state (after finishing the 
recovery procedure). This regime models the notion that the 
normal procedure tries to execute and reach a completed 
state, but if the system crashes, it starts running the recovery 
procedure (perhaps multiple times if there are crashes during 
recovery), which produces a recovered state.

Figure 6 shows how to extend the atomic_two_write 
specification to include recovery execution using the  nota-
tion. The postcondition indicates that, if atomic_two_
write finishes without crashing, both blocks were updated, 
and if one or more crashes occurred, with log_recover 
running after each crash, either both blocks were updated  

to data within that file; and a directory is a logical address 
space from file names to inode numbers. Building on this 
observation, CHL generalizes the separation logic for rea-
soning about the disk to similarly reason about higher-level 
address spaces like files, directories, or the logical disk con-
tents in a logging system.

As an example of address spaces, consider the specifi-
cation of atomic_two_write, shown in Figure 4. Rather 
than describe how atomic_two_write modifies the 
on-disk data structures, the specification introduces new 
address spaces, start_state and new_state, which corre-
spond to the contents of the logical disk provided by the 
logging system. Logical address spaces allow the developer 
of the logging system to state a clean specification, which 
provides the abstraction of a simple, synchronous disk to 
higher layers in the file system. Developers of higher layers 
can then largely ignore the details of the underlying asyn-
chronous disk.

Specifically, in the precondition, a1  vx applies to the 
address space representing the starting contents of the 
logical disk, and in the postcondition, a1  v1 applies to 
the new contents of the logical disk. Like the physical disk, 
these address spaces are partial functions from addresses 
to values (in this case, mapping 64-bit block numbers to 
4 KB block values). Unlike the physical disk, the logical disk 
address space provided by the logging system associates 
a single value with each block, rather than a set of values, 
because the transaction system exports a sound synchro-
nous interface, proven correct on top of the asynchronous 
interface below. Note how we use a variable others to stand 
for untouched disk addresses in the logical disk, just as we 
did for the physical disk in Figure 3.

Crucial to such a specification are explicit connections 
between address spaces. In Figure 4, we use a predicate 
log_rep, whose definition we elide here, but which cap-
tures how to map a higher-level state into a set of permis-
sible lower-level states. For this example of a logging layer, 
the predicate maps a “virtual” disk into a “physical” disk 
that includes a log. Such predicates may take additional 
arguments, as with the NoTxn argument that we use here 
to indicate that the logging layer is in a quiescent state, 
between transactions. This technique for connecting logi-
cal layers generalizes to stacks of several layers, as naturally 
appear in a file system.

The crash condition of atomic_two_write, from Figure 4, 
describes all of the states in which atomic_two_write 
could crash using log_intact(d1, d2), which stands 
for all possible log_rep states that recover to transaction 

SPEC atomic_two_write(a1, v1, a2, v2)
PRE disk: log_rep(NoTxn, start_state)

start_state: a1  � vx � a2  � vy � others
POST disk: log_rep(NoTxn, new_state)

new_state: a1  � v1 � a2  � v2 � others
CRASH disk: log_intact(start_state, new_state)

Figure 4. Specification for atomic_two_write.

SPEC log_recover()

PRE disk: log_intact(last_state, committed_state)

POST disk: log_rep(NoTxn, last_state) ∨
log_rep(NoTxn, committed_state)

CRASH disk: log_intact(last_state, committed_state)

Figure 5. Specification of log_recover.
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shows an example of this for a simple procedure; much 
of this chaining is automated in CHL. The crash condi-
tion for a procedure is the disjunction (i.e., “or”) of the 
crash conditions of all components of that procedure, 
as illustrated by the red arrows in Figure 7. Finally, prov-
ing the correctness of a procedure together with its recov-
ery function requires proving that the procedure’s crash 
condition implies the recovery precondition, and that 
recovery itself is idempotent.

4. PROTOTYPE IMPLEMENTATION
The implementation follows the organization shown in 
Figure 1. FSCQ and CHL are implemented using Coq, which 
provides a single programming language for implementa-
tions, specifications, and proofs. Figure 8 breaks down the 
source code of FSCQ and CHL. Because Coq provides a sin-
gle language, proofs are interleaved with source code and 
are difficult to separate. The development effort took several 
researchers about a year and a half; most of it was spent on 
proofs and specifications. Checking the proofs takes 11 h on 
an Intel i7-3667U 2.00 GHz CPU with 8 GB DRAM. The proofs 
are complete; we used Coq’s Print Assumptions com-
mand to verify that FSCQ did not introduce any unproven 
axioms or assumptions.

CHL. CHL is implemented as a domain-specific lan-
guage inside of Coq, much like a macro language (or, in 
the more technical language of proof assistants, we use a 
shallow embedding). We specified the semantics of this 
language and proved that it is sound. For example, we 
proved the standard Hoare-logic specifications for the for 
and if combinators. We also proved the specifications of 
disk_read, disk_write (whose spec is in Figure 3), 
and disk_sync manually, starting from CHL’s execution 
and crash model. Much of the automation (e.g., the chain-
ing of pre- and postconditions) is implemented using 
Ltac, Coq’s domain-specific language for proof search.

FSCQ. We implemented FSCQ also inside of Coq, writ-
ing the specifications using CHL. We proved that the imple-
mentation obeys the specifications, starting from the basic 
operations in CHL. FSCQ’s write-ahead log simplified speci-
fication and implementation tremendously, because much 

or neither was. The special ret variable indicates whether 
the system reached a completed or a recovered state 
and in this case enables callers of atomic_two_write 
to conclude that, if atomic_two_write completed with-
out crashes, it updated both blocks (i.e., updating none 
of the blocks is allowed only if the system crashed and 
recovered).

Note that distinguishing the completed and recovered 
states allows the specification to state stronger properties 
for completion than recovery. Also note that the recovery- 
execution version of atomic_two_write does not have 
a  crash condition: if the computer crashes, it will run  
log_recover again, and the specification describes what 
happens when the computer eventually stops crashing and 
log_recover can run to completion.

In this example, the recovery procedure is just log_
recover, but the recovery procedure of a system built on 
top of the transaction system may be composed of several 
recovery procedures. For example, recovery in a file system 
consists of first reading the superblock from disk to locate 
the log and then running log_recover.

3.5. Proving
In order to prove the correctness of a procedure, CHL 
follows the standard Hoare-logic approach of decompos-
ing the procedure into smaller units (e.g., control-flow 
constructs or lower-level functions with already-proven 
specifications) and chaining their pre- and postcondi-
tions according to the procedure’s control flow. Figure 7 

log_recover

PRE

POST

RECOVER

if bnum >= NDIRECT:
    indirect = log_read(inode.blocks[NDIRECT])
    return indirect[bnum - NDIRECT]
else:
    return inode.blocks[bnum]

if

log_read

return

return

Figure 7. Example control flow of a CHL procedure that looks up the address of a block in an inode, with support for indirect blocks. (The 
actual code in FSCQ checks for some additional error cases.) Gray boxes represent the specifications of procedures. The dark red box 
represents the recovery procedure. Green and pink boxes represent preconditions and crash conditions, respectively. Blue boxes represent 
postconditions. Dashed arrows represent logical implication.

SPEC atomic_two_write(a1, v1, a2, v2) � log_recover()
PRE disk: log_rep(NoTxn, start_state)

start_state: a1  � vx � a2  � vy � others
POST disk: log_rep(NoTxn, new_state) ∨

(ret = RECOVERED ∧ log_rep(NoTxn, start_state))
new_state: a1  � v1 � a2  � v2 � others

Figure 6. Specification for atomic_two_write with recovery. The  
operator indicates the combination of a regular procedure and a 
recovery procedure.
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with this by reasoning about how many writes each transac-
tion can generate and ensuring that the log has sufficient 
space before starting a transaction. We have not done this 
in FSCQ yet, although it should be possible to expose the 
number of available log entries in the log’s representation 
invariant. Instead, we allow log_commit to return an error, 
in which case the entire transaction (e.g., system call) aborts 
and returns an error.

5. EVALUATION
To evaluate FSCQ, this section answers several questions:

•	 Is FSCQ complete enough for realistic applications, and 
can it achieve reasonable performance? (Section 5.1)

•	 What kinds of bugs do FSCQ’s theorems preclude? 
(Section 5.2)

•	 Does FSCQ recover from crashes? (Section 5.3)
•	 How difficult is it to build and evolve the code and 

proofs for FSCQ? (Section 5.4)

5.1. Application performance
FSCQ is complete enough that we can use FSCQ for soft-
ware development, running a mail server, etc. For exam-
ple, we have used FSCQ with the GNU coreutils (ls, grep, 
etc.), editors (vim and emacs), software development 
tools (git, gcc, make, etc.), and running a qmail-like 
mail server. Applications that, for instance, use extended 
attributes or create very large files do not work on FSCQ, 
but there is no fundamental reason why they could not be 
made to work.

Experimental setup. We used a set of applications rep-
resenting typical software development: cloning a Git 
repository, compiling the sources of the xv6 file system and 
the LFS benchmark31 using make, running the LFS bench-
mark, and deleting all of the files to clean up at the end. We 
also run mailbench, a qmail-like mail server from the sv6 
operating system.7 This models a real mail server, where 
using FSCQ would ensure email is not lost even in case of 
crashes.

We compare FSCQ’s performance to two other file sys-
tems: the Linux ext4 file system and the file system from the 
xv6 operating system (chosen because its design is similar to 
FSCQ’s). We modified xv6 to use asynchronous disk writes 
and ported the xv6 file system to FUSE so that we can run it 
in the same way as FSCQ. Finally, to evaluate the overhead of 
FUSE, we also run the experiments on top of ext4 mounted 
via FUSE.

To make a meaningful comparison, we run the file sys-
tems in synchronous mode; that is, every system call com-
mits to disk before returning. (Disk writes within a system 
call can be asynchronous, as long as they are synced at 
the end.) For FSCQ and xv6, this is the standard mode of 
operation. For ext4, we use the data=journal and sync 
options. Although this is not the default mode of operation 
for ext4, the focus of this evaluation is on whether FSCQ can 
achieve good performance for its design, not whether its 
simple design can match that of a sophisticated file system 
like ext4. To give a sense of how much performance can be 
obtained through further optimizations or spec changes, 

of the detailed reasoning about crashes is localized in the 
write-ahead log.

FSCQ file server. We produced running code by using 
Coq’s extraction mechanism to generate equivalent 
Haskell code from our Coq implementation. We wrote a 
driver program in Haskell (400 lines of code) along with 
an efficient Haskell reimplementation of fixed-size words 
and disk-block operations (350 more lines of Haskell). 
The extracted code, together with this driver and word 
library, allows us to efficiently execute our certified 
implementation.

To allow applications to use FSCQ, we exported FSCQ as 
a FUSE file system, using the Haskell FUSE bindings2 in our 
Haskell FSCQ driver. We mount this FUSE FSCQ file system 
on Linux, allowing Linux applications to use FSCQ without 
any modifications. Compiling the Coq and Haskell code 
to produce the FUSE executable, without checking proofs, 
takes a little under 2 min.

Limitations. Although extraction to Haskell simplifies 
the process of generating executable code from our Coq 
implementation, it adds the Haskell compiler and runtime 
into FSCQ’s trusted computing base. In other words, a bug 
in the Haskell compiler or runtime could subvert any of 
the guarantees that we prove about FSCQ. We believe this 
is a reasonable trade-off, since our goal is to certify higher-
level properties of the file system, and other projects have 
shown that it is possible to extend certification all the way 
to assembly.6, 15, 22

Another limitation of the FSCQ prototype lies in dealing 
with in-memory state in Coq, which is a functional language. 
CHL’s execution model provides a mutable disk but gives no 
primitives for accessing mutable memory. Our approach is 
to pass an in-memory state variable explicitly through all 
FSCQ functions. That variable contains the current buffer-
cache state (a map from address to cached block value), as 
well as the current transaction state, if present (an in-memory 
log of blocks written in the current transaction). In the 
future, we want to support multiprocessors where several 
threads share a mutable buffer cache, and we will address 
this limitation.

A limitation of FSCQ’s write-ahead log is that it does 
not guarantee how much log space is available to commit 
a transaction; if a transaction performs too many writes, 
log_commit can return an error. Some file systems deal 

Component Lines of code

Fixed-width words 2,709
CHL infrastructure 5,895
Proof automation 2,304
On-disk data structures 7,571
Buffer cache 662
Write-ahead logging 3,191
Bitmap allocator 441
Inodes and files 3,317
Directories 4,451
FSCQ’s top-level API 1,198

31,739Total

Figure 8. Combined lines of code and proof for FSCQ components.
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5.2. Bug discussion
To understand whether FSCQ eliminates real problems 
that arise in current file systems, we consider broad cat-
egories of bugs that have been found in real-world file sys-
tems24, 38 and discuss whether FSCQ’s theorems eliminate 
similar bugs:

1.  Violating file or directory invariants, such as all link 
counts adding up36 or the absence of directory cycles.26

2.  Improper handling of unexpected corner cases, such 
as running out of blocks during rename.13

3.  Mistakes in logging and recovery logic, such as not 
issuing disk writes and syncs in the right order.20

4.  Misusing the logging API, such as freeing an indirect 
block and clearing the pointer to it in different 
transactions.19

5.  Low-level programming errors, such as integer over-
flows21 or double frees.4

6.  Resource allocation bugs, such as losing disk blocks37 
or returning ENOSPC when there is available space.27

7.  Returning incorrect error codes.5

8.  Bugs due to concurrent execution of system calls, such 
as races between two threads allocating blocks.25

Some categories of bugs (#1–5) are eliminated by FSCQ’s 
theorems and proofs. For example, FSCQ’s representation 
invariant for the entire file system enforces a tree shape for 
it, and the specification guarantees that it will remain a tree 
(without cycles) after every system call.

With regards to resource allocation (#6), FSCQ guaran-
tees resources are never lost, but our prototype’s specifi-
cation does not require that the system be out of resources 
in order to return an out-of-resource error. Strengthening 
the specification (and proving it) would eliminate this 
class of bugs.

Incorrect error codes (#7) can be a problem for our 
FSCQ prototype in cases where we did not specify what 
exact code (e.g., EINVAL or ENOTDIR) should be returned. 
Extending the specification to include specific error codes 
could avoid these bugs, at the cost of more complex speci-
fications and proofs. On the other hand, FSCQ can never 
have a bug where an operation fails without an error code 
being returned.

we measure ext4 in three additional configurations: the 
journal_async_commit mode, which uses checksums 
to commit in one disk sync instead of two (“ext4-journal-
async” in our experiments); the data=ordered mode, 
which is incompatible with journal_async_commit 
(“ext4-ordered”); and the default data=ordered and 
async mode, which does not sync to disk on every system 
call (“ext4-async”).

We ran all of these experiments on a quad-core Intel 
i7-3667U 2.00 GHz CPU with 8 GB DRAM running Linux 
3.19. The file system was stored on a separate partition 
on an Intel SSDSCMMW180A3L flash SSD. Running 
the experiments on an SSD ensures that potential file-
system CPU bottlenecks are not masked by a slow rota-
tional disk. We compiled FSCQ’s Haskell code using 
GHC 7.10.2.

Results. The results of running our experiments are 
shown in Figure 9. The first conclusion is that FSCQ’s per-
formance is close to that of the xv6 file system. The small gap 
between FSCQ and xv6 is due to the fact that FSCQ’s Haskell 
implementation uses about four times more CPU time than 
xv6’s. This can be reduced by generating C or assembly code 
instead of Haskell. Second, FUSE imposes little overhead, 
judging by the difference between ext4 and ext4-fuse. Third, 
both FSCQ and xv6 lag behind ext4. This is due to the fact 
that our benchmarks are bottlenecked by syncs to the SSD, 
and that ext4 has a more efficient logging design that defers 
applying the log contents until the log fills up, instead of at 
each commit. As a result, ext4 can commit a transaction with 
two disk syncs, compared to four disk syncs for FSCQ and 
xv6. For example, mailbench requires 10 transactions per 
message, and the SSD can perform a sync in about 2.8  ms. 
This matches the observed performance of ext4 (64 ms per 
message) and xv6 and FSCQ (103 and 118 ms per message, 
respectively).

Finally, there is room for even further optimizations: 
ext4’s journal_async_commit commits with one disk 
sync instead of two, achieving almost twice the through-
put in some cases; data=ordered avoids writing file data 
twice, achieving almost twice the throughput in other cases; 
and asynchronous mode achieves much higher throughput 
by avoiding disk syncs altogether (at the cost of not persist-
ing data right away).
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Figure 9. Running time for each phase of the application benchmark suite and for delivering 200 messages with mailbench.
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of code in the CHL infrastructure and changing over half 
of the implementations and proofs for the write-ahead log. 
However, layers above the log did not require any changes, 
since the log provided the same synchronous disk abstrac-
tion in both cases.

Buffer cache. We added a buffer cache to FSCQ after 
we had already built the write-ahead log and several lay-
ers above it. Since Coq is a pure functional language, 
keeping buffer-cache state required passing the current  
buffer-cache object to and from all functions. Incorporating 
the buffer cache required changing about 300 lines of 
code and proof in the log, to pass around the buffer-
cache state, to access disk via the buffer cache and to  
reason about disk state in terms of buffer-cache invariants. 
We also had to make similar straightforward changes to 
about 600 lines of code and proof for components above 
the log.

Optimizing log layout. The initial design of FSCQ’s write-
ahead log used one disk block to store the length of the on-
disk log and another block to store a commit bit, indicating 
whether log recovery should replay the log contents after a 
crash. Once we introduced asynchronous writes, storing 
these fields separately necessitated an additional disk sync 
between writing the length field and writing the commit bit. 
To avoid this sync, we modified the logging protocol slightly: 
the length field was now also the commit bit, and the log is 
applied on recovery if the length is nonzero. Implementing 
this change required modifying about 50 lines of code and 
about 100 lines of proof.

5.5. Evaluation summary
Although FSCQ is not as complete and high-performance as 
today’s high-end file systems, our results demonstrate that 
this is largely due to FSCQ’s simple design. Furthermore, 
the case studies in Section 5.4 indicate that one can improve 
FSCQ incrementally. In future work, we hope to improve 
FSCQ’s logging to batch transactions and to log only meta-
data; we expect this will bring FSCQ’s performance closer 
to that of ext4’s logging. The one exception to incremental 
improvement is multiprocessor support, which may require 
global changes and is an interesting direction for future 
research.

6. CONCLUSION
This paper’s contributions are CHL and a case study of 
applying CHL to build FSCQ, the first certified crash-safe 
file system. CHL allowed us to concisely and precisely 
specify the expected behavior of FSCQ. Via this verification 
approach, we arrive at a machine-checked proof that FSCQ 
avoids bugs that have a long history of causing data loss in 
previous file systems. For this kind of critical infrastructure, 
the cost of proving seems a reasonable price to pay. We hope 
that others will find CHL useful for constructing crash-safe 
storage systems.
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Multiprocessor bugs (#8) are out of scope for our FSCQ 
prototype, because it does not support multithreading.

5.3. Crash recovery
We proved that FSCQ implements its specification, but 
in principle it is possible that the specification is incom-
plete or that our unproven code (e.g., the FUSE driver) has 
bugs. To do an end-to-end check, we ran two experiments. 
First, we ran fsstress from the Linux Test Project, which 
issues random file-system operations; this did not uncover 
any problems. Second, we experimentally induced crashes 
and verified that each resulting disk image after recovery 
is consistent.

In particular, we created an empty file system using 
mkfs, mounted it using FSCQ’s FUSE interface, and then 
ran a workload on the file system. The workload creates two 
files, writes data to the files, creates a directory and a sub-
directory under it, moves a file into each directory, moves 
the subdirectory to the root directory, appends more data 
to one of the files, and then deletes the other file. During 
the workload, we recorded all disk writes and syncs. After 
the workload completed, we unmounted the file system and 
constructed all possible crash states. We did this by taking 
a prefix of the writes up to some sync, combined with every 
possible subset of writes from that sync to the next sync. For 
the workload described above, this produced 320 distinct 
crash states.

For each crash state, we remounted the file system (which 
runs the recovery procedure) and then ran a script to exam-
ine the state of the file system, looking at directory structure, 
file contents, and the number of free blocks and inodes. For 
the above workload, this generates just 10 distinct logical 
states (i.e., distinct outputs from the examination script). 
Based on a manual inspection of each of these states, we 
conclude that all of them are consistent with what a POSIX 
application should expect. This suggests that FSCQ’s speci-
fications, as well as the unverified components, are likely to 
be correct.

5.4. Development effort
The final question is, how much effort is involved in 
developing FSCQ? One metric is the size of the FSCQ code 
base, reported in Figure 8; FSCQ consists of about 30,000 
lines of code. In comparison, the xv6 file system is about 
3000 lines of C code, so FSCQ is about 10× larger, but 
this includes a significant amount of CHL infrastructure, 
including libraries and proof machinery, which is not 
FSCQ-specific.

A more interesting question is how much effort is required  
to modify FSCQ, after an initial version has been developed 
and certified. Does adding a new feature to FSCQ require 
reproving everything, or is the work commensurate with the 
scale of the modifications required to support the new fea-
ture? To answer this question, the rest of this section presents 
several case studies, where we had to add a significant feature 
to FSCQ after the initial design was already complete.

Asynchronous disk writes. We initially developed FSCQ to 
operate with synchronous disk writes. Implementing asyn-
chronous disk writes required changing about 1000 lines 
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