Finding Linearization Violations in Lock-Free
Concurrent Data Structures
by
Sebastien Alberto Dabdoub
S.B., Massachusetts Institute of Technology (2012)

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 2013
(© 2013 Massachusetts Institute of Technology. All rights reserved.

AUthor ..
Department of Electrical Engineering and Computer Science
May 18, 2013

Certified Dy
Frans Kaasheoek

Professor

Thesis Supervisor

Certified Dy
Nickolai Zeldovich

Associate Professor

Thesis Supervisor

Accepted Dy . ..o
Prof. Dennis M. Freeman
Chairman, Masters of Engineering Thesis Committee

Finding Linearization Violations in Lock-Free Concurrent

Data Structures
by
Sebastien Alberto Dabdoub

Submitted to the Department of Electrical Engineering and Computer Science
on May 18, 2013, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

Finding bugs in lock-free concurrent programs is hard. This is due in part to the
difficulty of reasoning about the correctness of concurrent algorithms and the timing-
sensitive nature of concurrent programs. One of the most widely used tools for rea-
soning about the correctness of concurrent algorithms is the linearization property.
This thesis presents a tool for automatic dynamic checking of concurrent programs
under the Total-Store-Order (TSO) memory model and a methodology for finding
linearization violations automatically with the tool.

Thesis Supervisor: Frans Kaasheoek
Title: Professor

Thesis Supervisor: Nickolai Zeldovich
Title: Associate Professor

Acknowledgments

I wish to thank my advisors, Frans Kaashoek and Nickolai Zeldovich, for their guid-
ance and mentorship. Thank you to Austin Clements for your advice and many

discussions. Finally, thank you to Stephen Tu for our collaborations.

Contents

1 Introduction
1.1 Contributions
1.2 Outline.

2 Background

2.1 Reasoning About Correctness
2.1.1 Lock-free algorithms
2.1.2 TSO Memory Model
2.1.3 Linearizability oo

2.2 Verifying Programso
2.2.1 Dynamic Model Checking
2.2.2 Dynamic Partial Order Reduction (DPOR)

2.3 Related Work

3 Design

3.1 Codex
3.1.1 Modeling Sequential Consistency
3.1.2 Modeling TSO

3.2 Testing for Linearizability Violations

4 Evaluation
4.1 Finding User Assertion Violations Using Codex
4.1.1 Dekker’s Algorithm and Peterson’s Algorithm

4.1.2 TSO Bug in PostgreSQL WaitLatch 20

4.2 Finding Linearizability Violations Using Codex 22
4.2.1 A Simple Lock-Free Concurrent Hash Table 22

4.2.2 Valois’ Lock-Free Concurrent Linked List 23

4.3 Codex Performance Lo 24

5 Conclusions 25
5.1 Future Work 25

Chapter 1

Introduction

Concurrent programs are a staple of high-performance applications from the system
level to the user level. Writing correct concurrent programs is a tricky business.
Assumptions that hold for one set of abstractions can fail to hold for others when
attempting to increase the concurrency of an algorithm. For example, when writ-
ing concurrent algorithms using locks, it is often assumed that the program executes
reads and writes in the order they are written. This is referred to as Sequential Con-
sistency and it holds when using locks. Sequential Consistency is a type of memory
model, which dictates how reads and writes may be re-ordered in a multi-threaded
environment. Sequential Consistency is the strictest memory model, stating that
reads and writes must be performed in exactly the order they are presented in by
a program. There are weaker memory models, such as the Total-Store Order mem-
ory model, which allow some well defined re-ordering of reads and writes between
threads. When attempting to get rid of locks, the assumption of Sequential Consis-
tency may no longer hold and a previously correct algorithm can become incorrect
due to read/write re-orderings.

When reasoning about concurrent algorithms, it becomes necessary to consider
the possible thread interleavings, or schedules, and ensure that each one produces
correct behavior. This quickly becomes infeasible with larger programs and thus tools
and abstractions have been developed to address this issue. One such reasoning tool,

called Linearizability, will be of particular interest for this thesis [5]. Linearizability is

a correctness condition that can be applied at the method call, or application interface,
level. It requires that method calls appear to occur instantaneously at some point
between method invocation and return. Linearizability therefore guarantees that the
concurrent algorithm can be used in a safe race-free way. Linearizability allows us to
abstract reasoning about correctness to the API level of a concurrent algorithm, thus
simplifying the process of reasoning about concurrent algorithms.

Once an algorithm has been expressed as an actual program, it becomes necessary
to test to ensure that the reasoning and assumptions (as well as the translation to real
code) are sound. Concurrent programs are notoriously difficult to test and debug.
Even if all tests pass on a run of the program, there may be another schedule where
some tests fail. Using traditional testing methods, such as unit testing, makes it
difficult to cover enough of the schedule space to ensure that the tests will never fail.
This is because we have no control over the scheduling and thus we are forced to
re-run the program many times in the hopes of covering more of the schedule space.
A different methodology, called Dynamic Model Checking, addresses this problem
by being able to induce arbitrary schedules in a program. This allows us to test

concurrent programs comprehensively.

1.1 Contributions

This thesis presents a tool, Codex, for the automatic dynamic checking of concurrent
programs under the Total-Store-Order (TSO) memory model and a methodology
for finding Linearizability violations automatically with the tool. Codex performs
Dynamic Model Checking of C++11 code under the Total-Store-Order (TSO) mem-
ory model. This thesis applies Codex in the verification of lock-free algorithms un-
der TSO. I found known TSO bugs using assertion (safety-condition) violations in
Dekker’s Algorithm, Peterson’s algorithm, and the PostgreSQL WaitLatch synchro-
nization primitive. The methodology presented for finding Linearizability violations
is a procedure for using Codex to verify that a program does not exhibit behavior that

would violate Linearizability. Using this methodology for finding Linearizability vio-

lations, I use Codex to find Linearizability violations in a simple lock-free concurrent
hash-table and to verify Valois’ lock-free concurrent linked list. This methodology
can be used for other algorithms as well and takes steps towards easier verification of

concurrent lock-free programs.

1.2 Outline

In Chapter 2, I go into more detail about Linearizability, memory models, and model
checking as well as related work. In Chapter 3, I discuss the design of the model
checking tool and the methodology for checking Linearizability. In Chapter 4, I eval-
uate the model checker and the methodology for checking Linearizability on example

programs and in the final chapter I give my conclusions.

Chapter 2

Background

2.1 Reasoning About Correctness

In the following section, I will describe some useful concepts for discussing the cor-
rectness of concurrent algorithms. I will describe the kinds of algorithms that we
are interested in (lock-free), the machine model in which we are considering these
algorithms, and a useful correctness condition (Linearizability). These will be our

tools for reasoning about correctness of concurrent algorithms.

2.1.1 Lock-free algorithms

The machine model I use in this thesis for concurrent algorithms involves threads
that communicate through shared memory. The usual correctness condition used
in this model is that of data-race freedom. This is often achieved through the use
of locks which provide mutual exclusion in order to ensure there are no concurrent
accesses to the same memory location. The use of coarse-grained locking to avoid
data races is fairly well understood and thus simplifies the reasoning of concurrent
programs. The problem with coarse-grained locking is that it often does not scale well
with large numbers of locks [4]. Fine-grained locking strategies can improve on this,
but are hard to design and may still require unnecessary sharing across CPU caches.

One attempt to avoid the pitfalls of locking is to forego their use altogether in what

are known as lock-free algorithms. These algorithms often require atomic hardware
instructions such as Compare-and-Swap (CAS) and may contain benign data races.
More formally, a method is lock-free if infinitely often some method call finishes in a

finite number of steps [5].

2.1.2 TSO Memory Model

When we forego the use of locking and other synchronization primitives, the memory
model of our machine becomes important. The memory model defines the accept-
able set of return values for a read of a memory address. Sequential Consistency is
the most basic memory model and is the one implicitly assumed by most program-
mers. Sequential Consistency states that a read returns the value last written to that
address. Locks and other synchronization primitives implicitly enforce Sequential
Consistency. We can then consider every possible interleaving of a concurrent algo-
rithm and reason about its correctness as we would with a sequential algorithm. On
the other hand, if we don’t use locks and the machine’s memory model is weaker than
Sequential Consistency, it is possible to produce schedules not valid under any se-
quential interleaving. Thus a program which is correct under Sequential Consistency
may be incorrect under a weaker memory model.

In this thesis, I consider the Total-Store-Order (T'SO) memory model, used by the
ubiquitous x86 architecture. More specifically, I use the machine model described by
Owens et al. in X86-TSO which formally defines the behavior of a multi-core machine
with the TSO memory model [10]. Figure 2-1 illustrates the machine model. The basic
idea is that every core has a write buffer. When a thread (logically interchangeable
with core) writes to an address, the write gets stored on the buffer for some arbitrary
amount of time before getting flushed to the shared memory. When a thread performs
a read, it first checks its own write buffer for the most recent write and then resorts
to the shared memory if there isn’t one. Therefore two threads may see different
values for a read of the same address. Figure 2-2 depicts a simple lock-free algorithm
that produces behavior not possible under Sequential Consistency, but possible under

TSO.

10

write write write

B B B
u u u
cpul [{] lcPul |f| lcPy| |
f f f
read e read e read e
r r r
write write write
Shared Memory
Figure 2-1: The x86-TSO Machine Model
Init: x =y = 0;
Thread 1: Thread 2:
x=1; y=1;
print y; print x;

Figure 2-2: A simple lock-free algorithm. Allowed output under TSO: {0, 0}.

If we place a memory fence after each write in the program in Figure 2-2, which
flushes the write buffers, we end up with sequentially consistent behavior. Atomic

instructions like CAS also flush the write buffer.

2.1.3 Linearizability

Linearizability is the correctness condition most used in the literature when discussing
lock-free algorithms [2]. Linearizability states that “each method call should appear
to take effect instantaneously at some moment between its invocation and response”
[5]. This property ensures that method calls behave atomically, and thus concurrent
invocations are free from races. Linearizability also has the property of composition.
That is, if every individual method in a data structure is Linearizable, then the
whole data structure is Linearizable. Composition is a handy property that further
simplifies reasoning about concurrent algorithms by allowing smaller sub-problems to

be tackled (in this case, individual methods instead of the program as a whole). In

11

the context of lock-free algorithms, Linearizability is usually achieved in a few ways.
If the method, or set of operations, does not make any changes (i.e. read-only) it
is already linearizable. When we have a method that makes changes (i.e. writing
a shared variable), it is often necessary to use atomic instructions like CAS or a
memory fence to make the changes “take effect instantaneously”. Indeed, researchers
have shown that in some cases atomic instructions or memory fences are required for

Linearizability [1].

2.2 Verifying Programs

Once we have a written program, it becomes necessary to test it to ensure it behaves
as intended. For sequential programs, testing usually involves running the program
once on a set of assertions and making sure those assertions are not violated. If the
program passes, we can be assured that the program works as intended as long as
our test cases are sufficiently comprehensive. In the concurrent setting, this kind
of verification is insufficient. Even if the program passes all assertions once, it may
fail them on a different run because a different interleaving has been induced by
the machine. We need to ensure that the assertions would pass under any possible

schedule. Dynamic Model Checking seeks to solve this issue.

2.2.1 Dynamic Model Checking

Dynamic Model Checking uses runtime scheduling to explore the state space of con-
current programs in order to verify them. The concurrent program is fed to the
checker, which then executes it under a comprehensive set of schedules that guar-
antee correct execution under any possible schedule. Dynamic Model Checking is
limited to programs that are deterministic, closed (i.e. self contained with assertions
and input included), and in some cases partially re-written to use the instrumentation
of the checker.

Dynamic Model Checkers are often able to make assertions about liveness and

traces as well as user-level assertions (such as foo!=NULL). They can state if some

12

code has deadlock or a data race (which in my experience is not very useful since most
tend to be benign in practice). Dynamic Model Checking may sound like a panacea
for the problems associated with concurrent testing and debugging, but there remains
a glaring issue. The state space of schedules explodes exponentially with the size of
the program. Currently, this makes Dynamic Model Checking impractical for all but

the smallest of programs.

2.2.2 Dynamic Partial Order Reduction (DPOR)

Despite this issue, it turns out to be unnecessary to run all schedules. In practice,
if a bug exists, it is found very quickly when the state space is explored in order
of increasing thread switches. This agrees with the intuition that most concurrency
bugs can occur between only two threads. However, in order to verify the program
completely, the rest of the state space still needs to be covered.

One approach to overcome this challenge is approximation. That is, sample the
state space and verify the program approximately [2]. The problem with this approach
is that it is difficult to tell how good the approximation is. Another strategy is to
reduce the set of schedules that need to be executed by only looking at the important
thread transitions. Dynamic Partial Order Reduction (DPOR) is an algorithm by
Flanagan et al. for reducing the schedules that need to be explored, since many
schedules turn out to be redundant [3]. For example, there is no reason to verify a
schedule that re-orders two reads from a verified schedule. DPOR points out that
the re-orderings that really matter are between writes to the same shared variable,
more generally referred to by Flanagan as dependent transitions. A read and a write
to the same variable is also a dependent transition. Most other transitions, such as
writes to different variables, are independent and thus do not need to be re-ordered

and checked.

13

2.3 Related Work

CHESS is the project that originally inspired this thesis [9]. It is a Dynamic Model
Checker which can check user assertions and liveness conditions. It does not include
weaker memory models. Line-up is a follow up project which performs Linearizability
checks on top of CHESS [2]. It does not consider weaker memory models because it
relies on CHESS. The authors mention that Line-up is memory model agnostic, so
presumably it would work if using a checker which included other memory models.
Like my project, Line-up seems to require less manual work than other tools to check
Linearizability. This is achieved by comparing “observations” (presumably program
traces) from the sequential and concurrent run of the program. There has also been
work on model checking under the TSO memory model using code rewriting to model
TSO [8], but not discussing correctness conditions like Linearizability directly.
Eddie Kohler’s work and notes on Read-Copy Update (RCU) has also been invalu-
able to this thesis [6]. Kohler points out the limitations and costs of Linearizability
and describes how RCU avoids them. Of course, RCU is not without its own costs
such as the additional memory often required for shadow copies, but RCU represents
a viable alternative approach to the problem of concurrent algorithms. Kohler’s notes
do much to clarify the notion of Linearizability and his hash table examples are a

direct inspiration to the simple hash table used in the evaluation section of this thesis.

14

Chapter 3

Design

The following sections describe the design of Codex, the Dynamic Model Checker,
and the methodology for finding Linearizability violations. Codex is a software sys-
tem implemented in C++ while the process for finding Linearizability violations is a

methodology that uses Codex.

3.1 Codex

The Codex model checker consists of a schedule generator and a schedule executor.
The executor and generator have a Client-Server architecture where the executor is
the client and the generator is the server. The diagram in Figure 3-1 depicts Codex’s

architecture.

Concurrent
Program

C++11 API call

Executor

schedule prefix execution trace

Generator

Figure 3-1: Codex’s Client-Server Architecture.

15

I built the C4++ executor for Codex that can run standard (albeit strict) C4++11
code under a Sequentially Consistent or TSO memory model. The Codex executor
implements a runtime scheduler by hooking the C++11 threading and atomic library
calls (C++11 is used because it is the first C4++ standard to have proper multi-
threading and atomic support). This allows Codex to capture any program behavior
related to concurrency, as long as the program is properly (strictly) written in C++11.
The executor’s runtime scheduler works by receiving some schedule prefix from the
generator, replaying the prefix, running the program to completion, and sending
back the completed execution trace to the generator. This is repeated until the
generator runs out of schedules to run or a violation occurs. Codex can run in
Sequential Consistency mode or TSO mode in order to model the respective memory
model. Codex also supports a basic form of transactional memory which is fairly
straightforward because we run programs in a single-threaded fashion. Codex uses a

generator that implements DPOR to generate schedules.

3.1.1 Modeling Sequential Consistency

The executor runs the schedule in a single-threaded manner. That is, it only allows
one thread to run at a time. A user level thread is modeled by a C++11 thread
under the control of the runtime scheduler. This allows us careful control of the thread
interleavings. Any shared variables must use the atomic C++11 library, which Codex
hooks into to capture reads and writes. Since Codex controls threads and shared

variables using locks and condition variables, Sequential Consistency is enforced.

3.1.2 Modeling TSO

In order to model TSO write-buffers, every thread in Codex has a separate buffer
thread that it sends its writes to. The buffer thread is merely a thread that, while
running, will perform the writes that have been added to its FIFO structure. The
generator will interleave these buffer threads as it would any other kind of thread

which produces behavior equivalent to TSO. Threads can also read from their buffer

16

threads which is a required TSO behavior. In order to verify that this implementation
models TSO correctly, I implemented each of Owen’s x86-TSO litmus tests [10]. The
litmus tests are a series of ten tests that cover all of the behavior observable under
TSO and not Sequential Consistency. Codex produces all of the correct behaviors

when used to run the litmus tests.

3.2 Testing for Linearizability Violations

At first, my goal was to study the kinds of user assertions that one would want to
check in order to verify lock-free programs under TSO. While finding user assertion
violations is useful, they can be rather non-intuitive and difficult to come up with
when looking for TSO bugs. Looking for user assertion violations merely moves the
difficulty from reasoning about lock-free programs to coming up with these assertions.
I find it to be more useful to provide a more general and simpler method for finding
TSO bugs. This is where Linearizability violations come in.

Linearizability is checked at the method, or API, level. The program is first
run with each method call being atomic. Codex achieves this with its transactional
memory capability. Codex logs the output of each method call for each schedule.
This means that the program has to contain some calls with return values. The
program is then run under Sequential Consistency. Codex makes sure that the return
values match the logs from the atomic run to ensure the program is correct under
Sequential Consistency. Finally, the program is run again under TSO. The return
values should never produce an output not in the log of the atomic run and all of the
return values in the log should be output by some schedule under TSO and Sequential
Consistency. Running the program with atomic method calls gives all of the possible
return values under a linearizable implementation of the algorithm. If a whole method
call is atomic, it is linearizable by definition. If TSSO or Sequential Consistency runs
fail to match the log, they have produced behavior not possible under Linearizability
and thus have a violation. If the violation occurs on the Sequential Consistency

run and the algorithm is linearizable, likely some implementation error occurred. If

17

the violation occurs on the TSO run, but not the Sequential Consistency run, the
algorithm likely failed to take into account TSO or made an incorrect assumption

about the TSO model.

18

Chapter 4

Evaluation

In order to evaluate Codex, there are two questions to ask: “Can Codex find viola-
tions?” and “How does Codex perform when verifying programs?”. I first check that
Codex can find user assertion violations in general. Then I use Codex to find Lin-
earizability violations, a specific kind of user assertion violations, on two concurrent
lock free data structures. Finally, I evaluate the performance of Codex verifying the

programs.

4.1 Finding User Assertion Violations Using Codex

To show that Codex can find user assertion violations, I verified the failure of some

known TSO bugs and the success of their fixes.

4.1.1 Dekker’s Algorithm and Peterson’s Algorithm

I started with two of the simplest concurrent lock-free algorithms. Dekker’s algorithm
and Peterson’s algorithm are two related algorithms for providing mutual exclusion
without locks (indeed, they can be used as the implementation for a basic lock).
The basic algorithm for Dekker’s on two threads is shown in Figure 4-1. The actual
program has an assertion that fails if the critical sections are interleaved. Codex

verifies the correctness of the program under TSO. If the fences are removed, the

19

int turn = 0;
int flag0 = flagl = false;
Thread 0: Thread 1:
flag0 = true; flagl = true;
thread_fence(); thread_fence();
while (flagl == true) { | while (flag0 == true) {
if (turn !'= 0) { if(turn !'= 1) {
flagO=false; flagl = false;
while (turn !'= 0) { while (turn != 0) {
//busy wait //busy wait
} }
flag0 = true; flagl = true;
+ }
} }
// critical section // critical section
turn = 1; turn = 0;
thread_fence(); thread_fence();
flag0 = false; flagl = false;

Figure 4-1: Dekker’s algorithm for two threads including necessary fences.

program is correct under Sequential Consistency, but the assertion is violated under
TSO. Peterson’s algorithm is treated similarly. One small issue that Codex takes care
of, in the case of these two algorithms, is that they are allowed to spin indefinitely.
Codex automatically contracts loops to avoid infinite schedules. For example, if a
loop iterates twice without writing, it is enough to consider the schedule where it

only iterates once.

4.1.2 TSO Bug in PostgreSQL WaitLatch

I also used Codex to verify a PostgreSQL TSO bug discovered in 2011 [7]. The bug
was in the WaitLatch synchronization primitive. Figure 4-2 shows how the WaitLatch
primitive is meant to be used.

The bug is due to the implementation of SetLatch(), which returns quickly if
the latch is already set. Without memory barriers under TSO, if SetLatch() returns
without performing a write then it may look to another thread as if SetLatch();

and work_to_do=true; are re-ordered. This can lead to the interleaving in Figure

20

Waiter: Waker:
for(;;)
{ work_to_do = true;

ResetLatch(); | SetLatch();
if (work_to_do)
doStuff();
WaitLatch();
}

Figure 4-2: Usage of WaitLatch

4-3 which results in a lost wake-up for the Waiter thread.

Interleaving:

SetLatch();

ResetLatch();

if (work_to_do) // evaluates to false
work_to_do = true;

WaitLatch();

Figure 4-3: Possible WaitLatch Interleaving under TSO.

Codex finds this bug in the form of finding the violation of the following assertion:

assert(!latch_has_been_set or isSetLatch() or work_done);

If the assertion is violated, it means that we are about to enter WaitLatch()
where the latch has been set by the Waker thread, reset by the Waiter, and the work
was not done (the if-statement evaluated to false). This results in the Waker thread’s
signal having been handled by the Waiter thread, the Waiter thread having done no
work, and the Waiter thread about to enter the wait call. Thus the wake-up has been
effectively skipped.

One solution is to have the WaitLatch user place a lock around the work_to_do
variable. While solving the issue, this solution is based on adding a convention and
changing the WaitLatch contract. Another solution involves getting rid of the opti-
mization, thus having the write to an internal variable occur every time. This also
solves the bug. My solution places a memory fence in the SetLatch() call imple-

mentation. All three solutions prevent the re-ordering in Figure 4-3, although the

21

solution that gets rid of the optimization results in no memory barriers. All three

solutions can be verified by Codex.

4.2 Finding Linearizability Violations Using Codex

To show that Codex can find Linearizability violations, I provide two examples. In
the first, I consider a very simple lock-free concurrent hash table with both lineariz-
able and non-linearizable implementations. Secondly, I implemented one of the early
lock-free algorithms, Valois’ lock-free concurrent linked list, and verified that it is

linearizable [11].

4.2.1 A Simple Lock-Free Concurrent Hash Table

Consider the most trivial concurrent hash table that stores integers. The C++ class
definition looks like:

class hash_table {

private:
const size_t size = 1 << 20;
atomic<int> _datalsize];

public:
void put(int key, int val);
int get(int key);

s

The get () can be implemented as:

int get(int key) {
return _datalkey].load(memory_order_relaxed);

}

The memory_order_relaxed argument tells the C++ atomic library to not put
in any fences. Whether or not this hash table will be linearizable depends on the
implementation of put (). The following implementation is not linearizable:

If we run the program in Figure 4-4, Codex finds a Linearizability violation in

the TSO run although it passes the sequentially consistent run. Under the TSO run,

22

void put(int key, int val) {
_datalkey] .store(val,memory_order_relaxed) ;

}
The table values are initialized to 0.
x and y are non-zero.
Thread A Thread B
table_ptr->put(0,x); table_ptr->put(1,y);
r_a = table_ptr->get(1l) == y; | r_b = table_ptr->get(0) == x;

Figure 4-4: Program run to test our hash table

it is possible to get r_a = false and r_b = false which reveals a Linearizability
violation. Codex catches this violation because that result does not occur during the
atomic run (it also does not occur during the sequentially consistent run). In order to
make this simple hash table linearizable, we can place a fence in the put () call after
the store (removing the memory_order_relaxed argument to store is equivalent).

This implementation passes our program in Figure 4-4 without violation.

4.2.2 Valois’ Lock-Free Concurrent Linked List

For a less trivial example, I implemented Valois’ lock-free concurrent linked list as
described in [11]. Rather than pure loads, stores, and fences the implementation relies
on the atomic Compare-and-Swap (CAS) operation. CAS is an atomic operation that
is provided by most modern hardware. Its method signature is usually something like
this:

bool CAS(T* address, T expected_value, T new_value);

where T is the appropriate type. CAS will store new_value at address if and only
if the current value at address is expected_value. The CAS operation performs a
read, a store, and a fence atomically.

The implementation is linearizable when run with programs similar to the one
in Figure 4-4. If I instead replace CAS with a conditional store, Codex finds the
expected violations. This is because the CAS call serves as the point in which the

method calls’ effect “instantaneously” takes place, often called the linearization point.

23

Dekker’s Algorithm 62, 719 schedules
Peterson’s Algorithm 24,453 schedules
PostgreSQL WaitLatch Algorithm 63 schedules

Figure 4-5: Number of Schedules Required to Verify User Assertions

Lock-Free Hash Table | Lock-Free Linked List
Atomic/Linearizable run 4 schedules 4 schedules
Sequential Consistency run 4 schedules 210 schedules
TSO run 14 schedules 701 schedules

Figure 4-6: Number of Schedules Required to Verify Linearizability.

4.3 Codex Performance

When considering the performance of Codex, the number of schedules is the most
important factor. Each schedule is executed fairly quickly, but the number of total
schedules required to verify the program is what increases running time. For instance,
when running the programs considered in this thesis, Codex executes 100 schedules
per second on average (Codex profiles this information). This performance can be
increased on a multi-core machine because executing schedules is parallelizable and
Codex’s architecture lends itself to running multiple executors with one schedule
generator. Figures 4-5 and 4-6 show the number of schedules required to verify the
programs discussed in this section. These numbers are relatively small because the
programs in question are relatively small. The growth of the number of schedules
with the size of the program is a current challenge.

It should be noted that Dekker’s algorithm and Peterson’s algorithm have a high
number of schedules due to the interactions of their nested loops. These numbers also

point out how TSO runs require more schedules than Sequential Consistency.

24

Chapter 5

Conclusions

Dynamic Model Checking provides a way to verify and debug concurrent programs.
This is particularly useful and needed when programming lock-free algorithms. Fur-
thermore, it is necessary for the model checker to take into account weaker memory
models like TSO, not just Sequential Consistency, when checking lock-free programs.
Otherwise the verification is not useful when the goal is to run the code on real
machines.

That said, there are still challenges to overcome. Dynamic Model Checking makes
it feasible to correctly test and debug code. However, as long as the number of
schedules to check remains impractically large for all but the smallest programs,

Dynamic Model Checking will not be relevant for industry-sized applications.

5.1 Future Work

An obvious way to proceed with this work would be to better automate Codex with
the methodology for finding Linearizability violations. In its current state, the process
is fairly manual. One must annotate the method calls and run Codex three separate
times under different conditions (atomic, Sequential Consistency, and T'SO). Another
avenue would be to implement other weak memory models. The C++11 memory
model in particular would be useful to be able to verify using Codex. The C++11

memory model will likely gain more use as C++11 becomes the standard C++ and

25

the memory model is notoriously difficult to understand if not working under the

default Sequential Consistency settings.

26

Bibliography

1]

[10]

[11]

Hagit Attiya, Rachid Guerraoui, Danny Hendler, Petr Kuznetsov, Maged M
Michael, and Martin Vechev. Laws of order: expensive synchronization in con-
current algorithms cannot be eliminated. In ACM SIGPLAN Notices, volume 46,
pages 487-498. ACM, 2011.

Sebastian Burckhardt, Chris Dern, Madanlal Musuvathi, and Roy Tan. Line-
up: a complete and automatic linearizability checker. In ACM Sigplan Notices,
volume 45, pages 330-340. ACM, 2010.

Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for
model checking software. In ACM Sigplan Notices, volume 40, pages 110-121.
ACM, 2005.

Keir Fraser. Practical lock-freedom. PhD thesis, PhD thesis, University of Cam-
bridge Computer Laboratory, 2004.

Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Mor-
gan Kaufmann, 2011.

Eddie Kohler. Notes on read-copy update. http://read.seas.harvard.edu/
cs261/2011/rcu.html. Accessed: 2013-5-18.

Tom Lane. Yes, waitlatch is vulnerable to weak-memory-ordering bugs. Mailing
list. pgsql-hackers@postgreSQL.org., 08 2011. Accessed 5, 2013.

Carl Leonardsson. Thread-Modular Model Checking of Concurrent Programs un-
der TSO using Code Rewriting. PhD thesis, Uppsala University, 2010.

Madan Musuvathi and Shaz Qadeer. Chess: Systematic stress testing of con-
current software. In Logic-Based Program Synthesis and Transformation, pages
15-16. Springer, 2007.

Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Mag-
nus O Myreen. x86-tso: a rigorous and usable programmer’s model for x86
multiprocessors. Communications of the ACM, 53(7):89-97, 2010.

John D Valois. Lock-free linked lists using compare-and-swap. In Proceedings of

the fourteenth annual ACM symposium on Principles of distributed computing,
pages 214-222. ACM, 1995.

27

