
Proving Confidentiality in a File System
Using DiskSec

(Poster #2)

Atalay Mert İleri, Tej Chajed,
Adam Chlipala, Frans Kaashoek, Nickolai Zeldovich

MIT CSAIL

OSDI ‘18

Storage Systems Contain Confidential Data

Users rely on the storage system to maintain their
confidentiality.

2

● A file system will be used as a case study in this talk.

Confidentiality in a File System

3

● Alice and Bob share a file-system on the same machine

● Bob tries to learn the content of Alice’s files

Threat model: Bob can call the file-system interface and cannot
bypass it.

○ can’t steal the disk
○ can’t read or write directly to the disk etc.

Bugs May Leak Confidential Data

File-systems are also subject to confidentiality bugs.

Examples
● Crash can expose deleted data (ext4 - 2017)
● Anyone can change POSIX ACLs (NFS - 2016)
● Truncated data can be accessed (btrfs - 2015)
● Crash can expose data (ext4 - 2014)
● Anyone can change POSIX ACLs (btrfs, gfs2 - 2010)
● ...

4

Approach: Formal Verification

5

● Write a specification that captures the desired
behavior of the system.

● Prove that implementation satisfies the specification.

● As long as specification accurately captures the
desired behavior, implementation details are irrelevant.

● We have verified file systems with correctness
specifications (e.g. DFSCQ [SOSP’17]).

dir_b, dir_a

dir_a, dir_b

Functional Specifications Do Not Ensure Confidentiality

Example: Specification for readdir
readdir can return entries in any order.

/dir_a
/dir_b

readdir(...) ⇒

6

Functional specifications ensure many security properties.
(e.g. no memory corruption, no disk corruption etc.)

Functional Specifications Do Not Ensure Confidentiality

● Meets specification

● Leaks confidential data

Nondeterministic functional specifications allow breach of confidentiality.

Confidentiality requires better specifications.

7

def readdir(...)
 dirs = get_dirlist(...)
 if (alice.txt file contains ‘a’)
 return sort(dirs)
 else
 return reverse_sort(dirs)

State of the Art in Verifying Confidentiality
Existing Systems

● seL4 [SSP’13]
● Ironclad [OSDI’14]
● CertiKOS [PLDI’16]
● Komodo [SOSP’17]
● Nickel [OSDI‘18]

8

Above systems use non-interference for their confidentiality
specifications.

Non-interference does not allow any data exposure from Alice to Bob.

Non-interference is Not Suitable for File System
Confidentiality.

● File systems have discretionary access control

● File systems intentionally expose metadata.

9

Contributions

DiskSec
 Framework for proving confidentiality of storage systems.

● File-system confidentiality specification.
● Proof technique to track ownership of the data.
● DiskSec implemented and proven in Coq Proof Assistant.

Evaluation
● SFSCQ file system: extension of DFSCQ with

confidentiality theorem
● Confidentiality for simple app on top of SFSCQ

10

Bob Cannot Infer Alice’s Confidential Data

11

World 2World 1

write(f, a) write(f, b)
Alice:Alice:

Bob Bob

Data is confidential:
observes same results

Confidentiality Means Other Users See Same Thing
Regardless of Your Data

12

s1

s2

s’1

s’2

p

Bob

p

Bob

ret
1

ret
2

s wri
te(

a)

write(b)

Confidentiality
requires that
ret

1
 = ret

2

World 1

World 2

Two states are equivalent with respect to a user (≅user),
if all the data visible to that user is the same in both states.

Our Confidentiality Specification: Data Non-interference

s0 s1 s2

s’0 s’1 s’2

≅Bob ≅Bob

13

p

p

syscall
Bob

ret
1

syscall
Bob

ret
2

=

Return Non-interferenceState Non-interference

Data Non-interference is a Good Confidentiality
Specification for File Systems

Data non-interference

● allows discretionary access control,

● allows exposing of metadata,

● forbids exposing of user data
○ even indirectly (e.g. readdir)

14

How can We Prove Data Non-interference?

15

Data non-interference require more complicated proofs than
functional correctness.

● Require reasoning about behavior of two executions.

Insight: File systems mostly does not inspect user data.
● Suffices to reason about where user data is accessed in one

execution.

Our Approach: Sealed Blocks

16

● Pretend that all disk blocks are logically sealed.

● Function needs to request an unseal to access the data content.

● Functions can be analyzed to prove that they do not unseal user
data.

Standard Disk Infrastructure

17

File system implementation

read(a: addr) -> data
write(a: addr, b: data)

Disk

data data data

read(a: addr) -> data
write(a: addr, b: data)

DiskSec Infrastructure

18

File system implementation

read(a: addr) -> sblock
write(a: addr, b: sblock)

 Sec logical disk

data
owner

u1, u2, ...

data
owner

sealed block (sblock)

seal(d: data, u: user) -> sblock
unseal(b: sblock) -> data

unseal owner trace

data
owner

data
owner

Disk

How to Use DiskSec?

19

DiskSec Implementation
 def read (f,...)

if (can_access(f))
 sealed_data = read_disk(f,...)
 data = unseal(sealed_data)
 return data

 else
 return error

Standard Implementation
 def read(f,...)
 data = read_disk(f,...)
 return data

1. Developer instruments his code with seals, unseals and
access control checks.

2. Developer proves that a certain property holds for the unseal
trace of the implementation.

Sealed Blocks Simplify Confidentiality Proofs

Unseal Secure
Function only unseals data accessible to the current user

Unseal Secure ➙ Return Non-interference

Unseal Public
Function only unseals data accessible to every user.

Unseal Public ➙ Data Non-interference

In this case, state non-interference needs to be proven separately.
20

DiskSec Summary

● Provides infrastructure for access control in storage
systems.

● Formalizes data non-interference as a confidentiality
specification.

● Simplifies proof effort by reducing data non-interference
proofs to unseal trace proofs.

21

Applying DiskSec: SFSCQ Overview

● Based on DFSCQ [SOSP’17]

● Supports multiple users

● Simplified permission model
○ All metadata, including file names, are public.
○ File contents may be public or private.
○ File owner is set upon creation.

● Fully implemented and verified in Coq Proof Assistant

22

Evaluation

23

● Did we prove DFSCQ satisfies data non-interference?
○ Not completely.
○ Needed to remove an advanced feature.

● Is performance the same as DFSCQ?
○ SFSCQ code = DFSCQ code + access control checks

● How much effort did it require?
○ Took one author ~3 months

Conclusions
● Correctness specifications are not enough for confidentiality.

● Data non-interference is a suitable confidentiality specification
for file systems.

● We designed and implemented DiskSec, a framework for
confidentiality proofs for storage systems.

● We implemented SFSCQ, the first file system with
machine-checkable confidentiality proofs, using DiskSec.

24

https://github.com/mit-pdos/fscq/tree/security

