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Abstract
It is difficult to achieve durability and crash consistency in file systems along with multicore
scalability. Commutative file system operations, which should scale according to the Scalable
Commutativity Property, conflict on shared resources like coarse-grained locks and pages
present in the page cache or buffer cache. Furthermore, data structures that are on separate
cache lines in memory (e.g., directory entries) are grouped together when the file system
writes them to disk for durability. This grouping results in additional conflicts.

This thesis introduces a new design approach that decouples the in-memory file system
from the on-disk file system, using per core operation logs. This facilitates the use of
highly concurrent data structures for the in-memory representation, which is essential for
commutative operations to proceed conflict free and hence scale perfectly. The in-memory
representation does not propagate updates to the disk representation immediately, instead it
simply logs the operation in a per core logical log. A sync or an fsync call processes these
operations and applies them to the disk. Techniques based on time stamping linearization
points of file system operations ensure crash consistency, and dependency tracking ensures
good disk performance.

A prototype file system, SCALEFS, implements this new approach and techniques.
Experiments using COMMUTER and SCALEFS show that the implementation is conflict free
for 99% of test cases involving commutative operations.
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Chapter 1

Introduction

Many of today’s file systems don’t scale well on multicore machines, and much effort is

spent on making them better to allow file system intensive applications to scale better. For

example, a detailed study of the Linux file system evolution [18] indicates that a quarter of

performance patches in file system code are related to synchronization. Yet, Klonatos et al.

observe that for a variety of Linux file system operations I/O performance does not scale

adequately with the number of available hardware threads [15]. While inefficient handling of

I/O requests is a contributing factor, unnecessary lock contention in the file system caching

layer also plays a role in limiting scalability. The authors recommend re-examining the

entire I/O path in the Linux kernel. This thesis contributes a clean-slate file system design

that allows for good multicore scalability by separating the in-memory file system from the

on-disk file system, and describes a prototype file system, SCALEFS, that implements this

design.

SCALEFS’s goals are as follows:

1. Achieve multicore scalability for file system operations. In particular, SCALEFS’s

design should scale perfectly for all file system operations that commute [8]. That is,

SCALEFS should be able to choose implementations of file system data structures

that are conflict-free—one core doesn’t have to read data written by another core—for

commutative file system operations.

2. Achieve durability, crash consistency, and fast recovery for file system data.
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3. Achieve good disk throughput. The amount of data written to the disk should be

commensurate with the changes that an application made to the file system, and that

data should be written efficiently.

These goals are difficult to achieve together. For example, as we will discuss in related

work, Linux achieves goals 2 and 3, but fails on 1. SV6 [8] achieves 1 but fails on goals 2

and 3.

The basic approach SCALEFS follows is to decouple the in-memory file system com-

pletely from the on-disk file system. Although existing file systems have done so to some

degree, SCALEFS takes this approach to its logical extreme. For example, Linux represents

directories in memory with a concurrent hash table, but when it updates a directory it also

propagates these changes to the in-memory ext4 physical log, which is later flushed to

the disk. This is essential to ensure durability, but can cause two commutative directory

operations to contend for the same disk block in the in-memory ext4 physical log. For ex-

ample, consider create(f1) and create(f2) under the same parent directory, where

f1 and f2 are distinct. By the definition of commutativity [8], the two creates commute

and should be conflict-free to allow for scalability. However, if these operations happen to

update the same disk block, they no longer remain conflict-free in this design, despite being

commutative.

SCALEFS separates the in-memory file system from the on-disk file system using an

operation log (oplog) [2]. The oplog consists of per-core logs of logical file system operations

(e.g., link, unlink, rename). SCALEFS sorts the operations in the oplog, and applies

them to the on-disk file system when fsync and sync are invoked. For example, SCALEFS

implements directories in a way that if two cores update different entries in a shared directory

then, no interaction is necessary between the two cores. When an application calls fsync

on the directory, at that point SCALEFS merges the per-core logical logs in an ordered log,

prepares the on-disk representation, adds the updated disk blocks to a physical log, and

finally flushes the physical log.

This organization allows decoupling of the in-memory file system from the on-disk

file system. The in-memory file system can choose data structures that allow for good

concurrency, choose ephemeral inode numbers that can be allocated concurrently without
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coordination, etc. On the other hand, the on-disk file system can choose data structures that

allow for efficient crash recovery and good disk throughput. In principle, the on-disk file

system can even re-use an existing on-disk format.

This decoupling approach allows for good multicore scalability and disk performance,

but it doesn’t provide crash consistency. The on-disk representation must correspond to

a snapshot at some linearization point of the in-memory representation of the file system.

fsync must ensure that it flushes a snapshot of the file system that existed at a linearization

point preceding the fsync invocation.

However, flushing out all the changes corresponding to this snapshot might incur a lot of

disk write traffic. Some changes might not need to be present on the disk for the fsync

to be causally consistent with the operations that preceded it. For example, an fsync on

a file does not need to flush to disk the creation of another file in an unrelated directory.

So it must ensure that it flushes only the data structures related to the file for which the

application called fsync. This set of data structures is a subset of the snapshot that existed

at a linearization point before fsync was invoked, such that the state on the disk is causally

consistent with all the operations that preceded the fsync in memory.

SCALEFS solves the consistent-snapshot problem by time-stamping linearization points

for logical in-memory operations, and merging the per-core logs with the operations sorted

by the timestamps of the linearization points. SCALEFS ensures that the snapshot is minimal

by tracking dependencies between operations in the unified log. At an invocation of fsync,

SCALEFS applies only dependent operations that relate to the file or directory being fsynced.

We have implemented SCALEFS by modifying SV6. We adopted the in-memory data

structures from SV6 [8] to implement the in-memory file system, but extended it with an

on-disk file system from xv6 [10] using the decoupling approach.

Experiments with SCALEFS on COMMUTER [8] demonstrate that SCALEFS’s multicore

scalability for commutative operations is as good as SV6 while providing durability. The

conflict heatmaps that COMMUTER generates for SV6 and SCALEFS are identical, except

for in the rows corresponding to the sync and fsync system calls, which were not present

at all in SV6. Experimental results also indicate that SCALEFS fares better than a Linux

ext4 [20] file system. SCALEFS is conflict free in 99% of the commutative test cases
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COMMUTER generates, while Linux is conflict free for only 70% of them.

The SCALEFS implementation has some limitations. First, it doesn’t support all the file

system operations that Linux supports and can therefore not run many Linux applications.

Second, SCALEFS doesn’t scale with disks; we use one disk for I/O. We believe that neither

limitation is fundamental to SCALEFS’s design.

A potential downside of the decoupling approach SCALEFS uses is that some file system

data lives twice in memory: once in the in-memory file system and once to manage the

on-disk representation. We haven’t yet run experiments to measure the memory overhead

this dual representation introduces. Another aspect of SCALEFS that is untested is its disk

performance, i.e., whether SCALEFS can write data at the rate of the disk bandwidth.

The main contributions of the thesis are as follows. First, we propose a new design

approach for durable multicore file systems by decoupling the in-memory file system

from the on-disk file system using an oplog. Second, we describe techniques based on time

stamping linearization points that ensure crash consistency and high disk performance. Third,

we have implemented the design and techniques in a SCALEFS prototype and confirmed

with experiments that the prototype achieves goals 1 and 2.

The rest of the thesis is organized as follows. §2 describes the work on which SCALEFS

builds, §3 describes the motivation behind SCALEFS, §4 explains the design of SCALEFS,

§5 contains implementation details, §6 presents experimental results and §7 concludes.
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Chapter 2

Related Work

The main contribution of SCALEFS is the split design that allows the in-memory file system

to be designed for multicore scalability and the on-disk file system for durability and disk

performance. The key idea that allows a clean separation between the two is to use a logical

log. The rest of this chapter relates SCALEFS’s separation to previous designs, SCALEFS’s

memory file system to other in-memory file systems, and SCALEFS’s disk file system to

previous durable file systems.

Separation using logging. File systems use different data structures for in-memory file

system operations and on-disk operations. For example, directories are often represented in

memory differently than on disk to allow for higher performance and parallelism. Linux’s

dcache [9, 21], which uses a concurrent hash table is a good example. But, file systems

don’t decouple the in-memory file system from on-disk file system; operations that perform

modifications to in-memory directories also manipulate on-disk data structures. This lack

of decoupling causes cache-line movement that is unnecessary and limits scalability. One

reason that previous file systems might not have separated the two so strongly is because

separation adds complexity and memory overhead.

Some file systems specialized for non-volatile memory systems have pushed the separa-

tion further; for example, ReconFS [19] decouples the volatile and the persistent directory

tree maintenance and emulates hierarchical namespace access on the volatile copy. In the

event of system failures, the persistent tree can be reconstructed using embedded connec-
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tivity and metadata persistence logging. SCALEFS’s design doesn’t require non-volatile

memory.

The decoupling is more commonly used in distributed systems. For example, the BFT

library separates the BFT protocol from NFS operations using a log [4].

SCALEFS implements the log that separates the in-memory file system from the on-disk

file system using an oplog [2]. Oplog allows cores to append to per-core logs without

any interactions with other cores. SCALEFS extends oplog’s design to sort operations by

timestamps of linearization points of file system operations to ensure crash consistency.

In-memory file systems. SCALEFS adopts its in-memory file system from SV6 [8]. SV6

uses sophisticated parallel-programming techniques to make commutative file system op-

erations conflict-free so that they scale well on today’s multicore processors. Due to these

techniques, SV6 scales better than Linux for many in-memory operations. SV6’s, how-

ever, is only an in-memory file system; it doesn’t support writing data to durable storage.

SCALEFS’s primary contribution over SV6’s in-memory file system is showing how to

combine multicore scalability with durability. To do so, SCALEFS extends the in-memory

file system to track linearization points, and adds an on-disk file system using a logical log

sorted by the timestamps of linearization points.

There has been recent work towards a better design of the page cache for multicore

parallelism. For example, Zheng et al. introduce a set-associative page cache[1] whose

goal is to provide performance equivalent to direct I/O for random read workloads and

to preserve the performance benefits of caching when workloads exhibit page reuse. In

principle, SCALEFS’s in-memory file system could adopt such ideas, but it will require

adding support for timestamping at linearization points.

On-disk file systems. SCALEFS’s on-disk file system is a simple on-disk file system

based on xv6 [10]. It runs file system updates inside of a transaction as many previous file

systems have done [6, 13], has a physical log for crash recovery of metadata file system

operations (but less sophisticated than say ext4’s design [20]), and implements file system

data structures on disk in the same style as the early version of Unix [23].
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Because of the complete decoupling of the in-memory file system and on-disk file system,

SCALEFS could be modified to use ext4’s disk format, and adopt many of its techniques

to support bigger files, more files, etc, and better disk performance. Similarly, SCALEFS’s

on-disk file system could be changed to use other ordering techniques than transactions; for

example, it could use soft updates [12], a patch-based approach [11], or backpointer-based

consistency [5].

SCALEFS’s on-disk file system doesn’t provide concurrent I/O using multiple storage

devices; its throughput is limited to the performance of a single storage device. But, because

the on-disk file system is completely decoupled from the in-memory file system, in principle

SCALEFS’s on-disk file system could be extended independently to adopt techniques from

systems such as LinuxLFS, BTRFS, TABLEFS, NoFS, XFS [14, 24, 22, 5, 25] to increase

disk performance.

SCALEFS’s on-disk file system is agnostic about the medium that stores the file system,

but in principle should be able to benefit from recent work using non-volatile memory such

as buffer journal [17] or ReconFS to minimize intensive metadata writeback and scattered

small updates [19].
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Chapter 3

Design Overview

This chapter explains what problems motivated us to explore a design that decouples the

in-memory file system from the on-disk file system. Furthermore, it explains the subtle

issues that must be gotten right in a decoupled design by considering several variations that

turn out to be incorrect.

SCALEFS’s goal is to allow commutative operations to scale while providing durability.

Consider two concurrent file system operations that do not involve any disk I/O; for example,

create(f1) and create(f2) under a directory dir1 where f1 and f2 are two

distinct files. The Scalable Commutativity Property [8] tells us that these two create

operations commute and can scale if they are conflict-free. Conflict-freedom can be achieved

by using a concurrent hash table for the directory representation in memory. Each file maps

to a different entry in the hash table and the create operations can proceed conflict-free

and thus scale perfectly.

SCALEFS’s durability goal complicates matters, however, because the two updates may

end up sharing the same disk block. If that is the case, then the core which performed one

update must read the update from another core’s cache to construct the disk block to be

written out. This construction of the disk block with shared updates is not conflict-free.

Since file systems routinely pack several in-memory data structures into a single disk block

(or whatever the smallest unit of disk I/O is), it is often the case that operations that are

commutative and can be implemented in a conflict-free manner without durability will lose

conflict-freedom (and thus multicore scalability) if durability is required.
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3.1 Decoupling using an operation log

To solve this conundrum SCALEFS decouples the in-memory file system (MEMFS) from the

on-disk file system (DISKFS). The in-memory file system uses concurrent data structures

that would allow commutative in-memory operations to scale, while the other file system

deals with constructing disk blocks and syncing those to disk. This approach allows all

commutative file system operations to execute conflict-free until an invocation of fsync.

The main challenge in realizing this approach is that fsync writes a crash-consistent

and minimal snapshot to disk. With crash-consistent we mean that after a failure the on-disk

file system must reflect a state of the file system that is consistent with what a running

program before the crash may have observed. For example, if a program observed the

existence of a file in MEMFS before a crash, then after recovery DISKFS must also have

that file. With minimal we mean that the snapshot that is written by fsync contains only

the changes related to the file or directory being fsynced, and not dirty data of files that are

not being fsynced.

These two properties are difficult to achieve together. Consider the strawman design that

acquires a global lock on the whole of MEMFS when fsync is invoked, and then flushes

any modified file system structures to the disk. This design would ensure that we have on

disk a consistent snapshot of the file system since MEMFS is not being changed at all while

the fsync occurs. But, this design has two problems: (1) operations on files unrelated to

the fsynced file are stalled for the duration of the fsync and (2) fsync writes to disk a

huge amount of data.

It may appear that fine-grained locking can solve this problem: fsync holds a lock

on just the file or directory being fsynced and flushes its modified content to the disk.

This design, however, isn’t correct. Let us consider the following sequence of instructions:

rename(dir1/a, dir2/a) followed by fsync(dir1). Here we would end up los-

ing file a since we only synced dir1 and not dir2, violating the atomicity of the rename

operation. This suggests that SCALEFS must somehow track that dir2 was involved in an

operation that fsync(dir1) exposes to the disk.

SCALEFS’s approach is to maintain a log of operations that update file metadata spread

20



file a
<lock held by T2>

file b
<lock held by T1>

file c
<lock held by T2>

inode 1

inode 2

Figure 3-1: Concurrent execution of rename(a,c) and rename(b,c). Thread T1 holds
a lock on file b, while thread T2 holds a lock on files a and c. The set of locks held by these
operations is disjoint, so timestamps obtained while holding the locks might not reflect the
actual order of execution.

across the file system. This log must be a logical log instead of a physical log, because

otherwise, as we observed earlier, two commutative create operations would no longer

be conflict-free if they share the same physical disk block. Therefore, the log contains

operations such as link, unlink, rename, etc. So in the motivating example, the log

contains rename(dir1/a, dir2/a) and when fsync(dir1) is invoked, SCALEFS

flushes the changes related to the entire rename operation to the disk.

3.2 Ordering operations

To ensure crash consistency, operations must be added to the log in the order that MEMFS

applied the operations. Achieving this property while maintaining conflict-freedom is diffi-

cult. It may appear that fine-grained locking could be used, but it isn’t sufficient to ensure

crash consistency. For example, a possible solution might involve logging the operations in

the logical log under all the MEMFS locks they acquire and only then releasing them. But

consider the following scenario. Directory dir1 contains three file names: a, b and c. a is

a link to inode 1, b and c are both links to inode 2. Thread T1 issues the syscall rename(b,

c) and thread T2 issues rename(a, c). Both these threads run concurrently.

Assume that T1 goes first. It sees that b and c are hardlinks to the same inode. So all it

needs to do is remove the directory entry for b. The only lock the thread acquires is on b

since it does not touch c at all. T2 then acquires locks on a and c and performs the rename.

Figure 3-1 depicts this scenario. Both the threads now proceed to log the operations holding
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their respective locks. T2 might end up getting logged before T1, even though to the user

the operations seemed to have executed in the reverse order. Now when the log is applied to

the disk on a subsequent fsync, the disk version becomes inconsistent with what the user

believes the file system state is. Even though MEMFS has c pointing to inode 1 (as a result

of T1 executing before T2), DISKFS would have c pointing to inode 2 (T2 executing before

T1). The reason behind this discrepancy is that reads are not guarded by locks. However if

we were to acquire read locks, SCALEFS would sacrifice conflict-freedom of in-memory

commutative operations.

Instead of fine-grained locks, we might consider using version numbers on each mutable

element, but that can lead to large space overhead. Say we maintain a version number in

each mutable element in MEMFS. Each operation has a vector of the version numbers of all

elements it read from or wrote to. Operations are logged in the logical log along with their

version vectors. When fsync is invoked, the operations in the logical log are then sorted

topologically on their version vectors and applied to the disk. This captures the correct order

in which operations occurred on MEMFS and the disk remains crash-consistent with what

applications observed happening in memory earlier. For example, for the previous example,

T1 would have a smaller version number for c in its version vector, and hence would be

ordered before T2. The problem with this design, however, is that it incurs a high memory

overhead. Every entry in the name hash table would need a version number.

We can do better and not pay the space overhead for version vectors by observing

that to achieve POSIX semantics all metadata operations must be linearizable. Thus, every

metadata operation must have a linearization point. If we can timestamp each linearization

point with a tsc value, we can be sure that the order indicated by these timestamps is the

order in which MEMFS applied these operations. fsync can order the operations by their

timestamps and ensure crash consistency without incurring any additional space overhead.

3.3 Determining linearization points

Since MEMFS uses lock-free data structures, determining the linearization points is chal-

lenging for read operations. The linearization points are regions made up of one or more
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atomic instructions. A simple, but unscalable way to get a timestamp at the linearization

point would be to protect this region with a lock and read the tsc value anywhere within

the locked region. For operations that update part of a data structure under a per-core lock

this scheme works well.

This design, however, would mean that reads must be protected by locks too, which

conflicts with our goal of achieving scalability for commutative operations. Consider three

file names x, y and z all pointing to the same inode. If one thread issues the syscall

rename(x,z) while another calls rename(y,z) concurrently, the definition of commu-

tativity tells us that these two syscalls commute. This is because it is impossible to determine

which syscall completed first just by looking at the final result. Our design ensures that these

syscalls are conflict-free; as mentioned earlier, if the source and destination for a rename

are the same, the source is simply removed without holding any lock on the destination.

However, if we were to protect reads with a lock too, these syscalls would no longer remain

conflict-free and hence would no longer scale.

To solve this problem, MEMFS protects read operations with a seqlock [16, §6]. MEMFS

reads the tsc value under the seqlock, and retries if the seqlock read does not succeed.

Each retry returns a new timestamp. The timestamp of the last retry corresponds to the

linearization point. In the normal case the two reads succeed without any conflicts and

MEMFS incurs no additional cache line movement.

3.4 Using oplog

SCALEFS uses an oplog [2] for implementing the logical log. An oplog maintains per-core

logs so that cores can add entries without communicating with other cores and merges

the per-core logs when an fsync or a sync is invoked. This ensures that conflict-free

operations don’t conflict because of appending log entries. The challenge in using an oplog

in SCALEFS is that the merge is tricky. Even though timestamps in each core’s log grow

monotonically, the same does not hold for the merge, as illustrated by the example shown in

Figure 3-2.

Figure 3-2 shows the execution of two operations on two different cores: op1 on core1
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op1

LP1 log op1

op2

LP2 log op2

Merge per-core logs
time

Figure 3-2: Merging of the per-core operation logs might need to wait for some operations
to complete.

and op2 on core2. LP1 is the linearization point of op1, LP2 of op2. If the per-core logs

happen to be merged at the time as indicated in the figure, op1 will end up missing from

the merged log even though its linearization point was before that of op2. Hence the merge

must wait for certain operations that are in progress to complete. SCALEFS handles this by

keeping track of per-core timestamp counters for when an operation enters and later leaves

its critical section. SCALEFS uses this information at the time of the merge to determine if

there are any operations in flight that the merge should wait for.

3.5 Discussion

The design described in the previous sections should achieve good multicore scalability,

because operations that commute should be mostly conflict free. The design of MEMFS can

achieve this by implementing files and directories using highly concurrent data structures.

Since MEMFS is not coupled with the disk, it is not restricted in the choice of data structures

that fulfill its purpose. All that MEMFS needs to do in order to later sync the operations to

the disk is log them in the logical log, which is also a per-core data structure. As a result,

file system operations should conflict neither during execution on files and directories in

MEMFS nor while logging themselves in the logical log.

fsync should also be conflict free for most file system operations it commutes with

(e.g., creation of a file in an unrelated directory). The only time an fsync conflicts with a

commutative operation is when MEMFS logs the operation in a per-core log and fsync

scans that log while merging. Since the merge only flushes the logs on cores that have

a non-empty one, this conflict need not always occur. For example, a previous sync or
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fsync might have just flushed out all the logs.

Another benefit of using a decoupled design is that we can use an existing on-disk file

system format and change the design of DISKFS accordingly. Since MEMFS and the logical

logging mechanism do not depend on the disk format at all, DISKFS can be changed with

relative ease to support any disk format.
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Chapter 4

SCALEFS

This chapter details the design of SCALEFS. SCALEFS consists of MEMFS– the in-memory

file system representation, DISKFS– the on-disk file system representation, and the logical

log that acts as an interface layer between the two.

4.1 MEMFS

Decoupling the in-memory and the disk file systems allows MEMFS to be designed for

multicore concurrency. MEMFS represents directories using chain hash tables that map

file/directory names to inode numbers (see Figure 4-1). Each bucket in the hash table has its

own lock, allowing commutative operations to remain conflict-free.

Files use radix arrays to represent their pages, each page protected by its own lock. This

representation of file pages is very similar to the way RadixVM represents virtual memory

areas [7]. MEMFS creates the in-memory directory tree on demand, reading in components

from the disk as they are needed. We will refer to inodes, files and directories in MEMFS as

mnodes, mfiles and mdirs.

To allow for concurrent creates to be scalable, mnode numbers in MEMFS are inde-

pendent of inode numbers on the disk and might even change on each new instantiation of

MEMFS from the disk. If MEMFS were to use the same mnode numbers as inode numbers

on the disk, it would also have to maintain a free mnode list much like the inode free list in

DISKFS, since the maximum number of inodes a file system can have is pre-determined.

27



hash(filename)
filename1

filename2

filename3

...

filenameN

<filename3,
mnode#3>
<filename1,
mnode#1>

<filenameX,
mnode#X>

<filenameY,
mnode#Y>

...
<filename2,
mnode#2>

Figure 4-1: Representation of a directory as a hash table in MEMFS. The table uses hashed
filenames as keys, and the buckets store mappings between filenames and mnode numbers.

The creation of every new file or directory would then have to traverse this free mnode list

to find an available mnode number, and concurrent creates would not scale.

Instead, MEMFS assigns mnode numbers in a scalable manner by maintaining per-core

mnode counts. On creation of a new mnode by a core, MEMFS computes its mnode number

by appending the mnode count on that core with the core’s CPU ID, and then increments

the core’s mnode count. MEMFS never reuses mnode numbers.

SCALEFS maintains a hashmap from mnode numbers to inode numbers and vice versa

for fast lookup. It creates this hashmap when the system boots up, and adds entries to it each

time a new inode is read in from the disk and a corresponding mnode created in memory.

Similarly SCALEFS also adds entries to the hashmap when an inode is created on disk

corresponding to a new mnode in memory.

SCALEFS does not need to update the hashmap immediately after the creation of an

mnode. It can wait for DISKFS to create the corresponding inode on a sync or an fsync

call, which is also when DISKFS looks up the disk free inode list in order to find a free

inode. As a result, MEMFS can process create calls scalably.

4.2 DISKFS

The implementation of DISKFS depends on the disk file system format used (e.g., ext3 [3],

ext4 [20], etc.). SCALEFS uses the xv6 [10] file system, which has a physical journal for

crash recovery. The file system follows a simple Unix-like format with conventional inodes,
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dir inode

block N

...

block 2
block 1

<dirent 1>
<dirent 2>
. . .

<dirent k>
<dirent k+1>
. . .

...

Figure 4-2: Representation of a directory in DISKFS. The directory inode stores a list of
block addresses. Each block contains a series of directory entries. The last but one address
points to an indirect block, and the last one points to a doubly indirect block.

files and directories. Inodes can have up to doubly indirect blocks. Figure 4-2 shows the

representation of a directory in DISKFS, which is completely different from the MEMFS

representation (Figure 4-1).

DISKFS maintains a buffer cache to cache blocks that are read in from the disk. In our

current design DISKFS’s buffer cache is not multicore because our current design is focused

on a single disk. To achieve I/O scalability with multiple disks, the buffer cache could be

split up on multiple cores, and all the cores could flush out their buffer caches to the disks in

parallel.

4.3 The logical log

The logical log ties MEMFS and DISKFS together but allows in-memory commutative file

system operations to proceed completely independently of each other. If a core updates

the in-memory data structures, it does not construct the updated disk block. Instead, upon

successful completion of file system operations, MEMFS logs the file system operations in

per-core logical logs, timestamping them with the tsc value at their linearization points as

explained in §3.3. SCALEFS represents an operation logically by an operation type, the files

and directories involved in the operation, and any further information required to carry out

the operation on DISKFS later. Typically this information is the set of arguments that were

passed to the corresponding MEMFS system call.

SCALEFS maintains the per-core logical logs using a modified version of oplog [2]. The
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per-core logs are simply vectors of operations sorted in increasing order of their timestamps.

A sync or an fsync merges these vectors into one, maintaining the timestamp ordering,

and clears the per-core logs. It then processes the operations in timestamp order. For each

operation, DISKFS constructs the disk blocks that were updated and writes them to a journal

on the disk within a transaction. In order to provide crash consistency, DISKFS syncs the

dirty blocks to the disk only after they have been successfully committed to the disk journal

within the transaction.

4.4 Operations in the logical log

If MEMFS were to log all file system operations, the logical log would incur a large space

overhead. For example, writes to a file would need to store the entire character sequence

that was written to the file. So MEMFS logs operations in the logical logs selectively.

By omitting certain operations from the log, SCALEFS not only saves space that would

otherwise be wasted to log them, but it also simplifies merging the per-core logs and

dependency tracking as described in §4.6. As a result the per-core logs can be merged and

operations applied to the disk much faster.

MEMFS logs only file system operations that involve more than one mnode in the logical

log. For example, it logs the creation of a file since there are two mnodes involved in the

operation: the new file and the parent directory.

However it does not log a change in file size, or a write to a file, since there is only one

mnode involved here. In this case, a single fsync would reflect the changes properly on

the disk. It is not possible for the operation to end up being synced to the disk only partially.

So such an operation does not need to be logged. In the example of a file write, a single

fsync call on the file would flush all the updates to the disk in a consistent manner.

In the other example involving a file creation, simply syncing the new file does not work.

DISKFS must also create a directory entry corresponding to this new file under the parent

directory. Moreover, both these actions need to take place within a single transaction in order

to preserve the atomicity of the create. Therefore MEMFS logs all create operations,

and by the same reasoning logs link, unlink and rename operations too.
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1: mfile.fsync_lock.acquire()
2: fsync_tsc← rdtscp()
3: process_logical_log(fsync_tsc)
4: size← mfile.size
5: offset← 0, page_index← 0
6: while offset < size do
7: if mfile.pages[page_index] == nullptr then
8: size← mfile.size
9: if size ≤ offset then

10: break
11: end if
12: end if
13: if mfile.pages[page_index].dirty_bit.is_set() then
14: Flush mfile.page[page_index] to disk
15: mfile.page[page_index].dirty_bit.clear()
16: end if
17: page_index← page_index+1
18: offset← offset + PAGE_SIZE
19: end while
20: Create fsync_transaction
21: add_to_transaction(inode length← size)
22: add_to_transaction(inode direct and indirect blocks)
23: Mark disk blocks in inode past size as free, add_to_transaction(free bitmap changes)
24: Mark newly allocated blocks as allocated, add_to_transaction(free bitmap changes)
25: write_to_disk(fsync_transaction)
26: Free blocks in the in-memory free block list, corresponding to line 23
27: mfile.fsync_lock.release()

Figure 4-3: fsync call on an mfile

4.5 The fsync call

The steps involved in an fsync call on a file are shown in Figure 4-3. fsync first merges

the per-core logical logs and processes relevant operations, applying them to the disk. Then

it flushes out dirty file pages. Finally it syncs file inode updates and metadata changes.

fsync operates within a transaction consisting only of the updates in lines 21-24 of

Figure 4-3 (i.e., metadata updates). The dirty file pages synced out in lines 6-19 are not a

part of the transaction, thereby saving space in the physical journal on disk. Syncing all the

file pages is not atomic either, which is an accepted design that many file systems follow.

Acquiring the fsync_lock in line 1 permits only one fsync call to be invoked on a
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file at a time. This lock ensures that the file pages flushed out, which are not a part of the

transaction, are consistent with the metadata updates synced to the disk. If no lock was held,

two concurrent fsync calls might observe two different states of the mfile and hence flush

out different numbers of file pages. Then each fsync would make changes to the inode

length and direct and indirect blocks within its own transaction depending on the state of the

mfile it observed. These transactions might then end up being logged to disk in any order,

depending on the order in which they acquire the journal lock while writing to disk in line

25. Thus the file inode on the disk might become inconsistent with the file contents.

Line 2 assigns to fsync_tsc the value of the Time Stamp Counter (TSC) register on

the core the fsync was invoked on. process_logical_log() requires fsync_tsc

in order to merge and process only those operations that have their linearization points (and

their timestamps) before fsync_tsc. The merge might have to wait for some in-flight

operations to complete in order to counter the scenario illustrated in Figure 3-2. SCALEFS

implements waiting using per-core operation start and end timestamps as described in §3.4.

process_logical_log() only processes operations the fsync depends on, details

of which are described in §4.6.

The while loop (lines 6-19) traverses the radix array of file pages and flushes out dirty

pages, resetting their dirty bits. If fsync notices that a page in the sequence is not present

(lines 7-12), it reads the size of the mfile again. An absent page could indicate that the page

was removed by a concurrent file truncate, which is quite possible as the only MEMFS

lock fsync holds is the fsync_lock. If the current offset is larger than the size of

the mfile, fsync has already flushed out all the pages in that range and can break out of the

loop.

DISKFS maintains a copy of the free block list in memory in order to keep the free block

bitmap on the disk in a consistent state if the fsync operation fails before completion.

Since file content writes do not take place within a transaction, DISKFS keeps track of new

disk blocks that were allocated using the in-memory free block list, and does not update the

free block bitmap on the disk while flushing out dirty pages. fsync logs changes to the

free block bitmap along with inode metadata updates in the transaction. So if the fsync

call fails after syncing the dirty file pages but before flushing out the fsync transaction,

32



the disk will not be in a state where certain newly allocated blocks are marked allocated in

the block free bitmap but have not been linked to the file inode yet.

After flushing out dirty file pages, fsync creates a transaction consisting of metadata

updates: the inode size, changes to the direct and indirect blocks and free bitmap updates.

fsync converts the new block allocations that were tracked in the in-memory free block

list, into free bitmap updates on the disk and logs them in the transaction. It also logs free

bitmap changes caused by truncation of pages beyond the new inode size, but holds off

marking those blocks as free in the in-memory free block list until the fsync transaction

has committed to the disk. This ensures that blocks that are freed as a result of the fsync

are not reused, perhaps by a concurrent fsync on another file, before this fsync commits.

An fsync call on a directory is relatively simple. The only tasks that must be performed

are steps 2 and 3 in the pseudocode in Figure 4-3, because MEMFS logs all operations that

pertain to directories —create, link, unlink and rename —in the per-core logical

logs. So all a directory fsync needs to do is pick out operations from the logical log that the

directory was involved in, or that the fsync depends on in some way (as the dependency

tracking mechanism describes in §4.6). An fsync call on a directory involves no interaction

with the MEMFS mdir at all, it only needs to consult the logical log. As a result MEMFS can

support operations on a directory in parallel with an fsync call on the same directory.

4.6 Dependency tracking in an fsync call

One of SCALEFS’s goals is to ensure that the amount of disk write traffic an fsync on a

file or a directory incurs is comparable to the changes the file or directory was involved in.

Therefore, an fsync processes the logical log to calculate the set of operations that need to

make it to the disk before it can be processed, instead of flushing the entire log. This set is

roughly the transitive closure of all operations that the file or directory was involved in.

The operations that MEMFS logs in the logical log are similar in the sense that they all

involve creation or deletion of links to mnodes. Two kinds of mnodes are involved in these

operations: the target or child (i.e., the mnode the link points to), and the parent directory

under which the link is created or removed from. For a create, the child is the new file
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or directory being created and the parent is the directory the creation takes place under.

Similarly, for a link and an unlink, the child is the mnode being linked or unlinked and

the parent is the directory the link or unlink takes place under. For a rename, the child

is the mnode being renamed and the parents are the source and the destination directories.

The function process_logical_log() that fsync calls in line 3 in Figure 4-3

runs an algorithm that calculates dependencies after the per-core logical logs have been

merged into a global one. It creates a list of dependent mnodes, which initially consists only

of the mnode the fsync was called on. The algorithm processes the logical log starting

with the most recent operation, and for each operation checks to see if the child mnode of

the operation is present in the list of dependent mnodes. If it is, then the fsync depends on

the operation, and the operation is added to the dependency list, and the parent mnode(s) of

the operation are added to the list of dependent mnodes. The check then continues over the

rest of the log, augmenting the list of dependent mnodes and the dependency list if required.

For a directory fsync, apart from this check the algorithm also includes operations

where the directory was a parent. Having calculated the dependency list, fsync applies

the operations to disk in increasing order of their timestamps, ensuring that only essential

operations get flushed out in the correct order. It removes the operations that have been

processed from the global log and leaves the others intact. A future merge of the per-core

logs simply appends to this global log.

4.7 The sync call

A sync call simply merges the per-core logical logs into a global one and flushes out

all operations. sync records the timestamp sync_tsc at which it is invoked and passes

it on to process_logical_log(), which then merges the logical logs to include

all operations that have linearization points before sync_tsc. It might have to wait for

any operations that are still in flight using the wait and merge procedure described in

§3.4. process_logical_log() does not run the dependency tracking algorithm when

invoked from within a sync.

The sync then applies all the operations in the merged log to disk in timestamp order.
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Since single mnode operations are not logged in the logical log, sync also traverses the

mnode list to fsync any dirty files.
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Chapter 5

Implementation

We implemented SCALEFS in SV6, a research operating system whose design is centered

around the Scalable Commutativity Property [8]. Previously SV6 consisted of an in-memory

file system that MEMFS reuses, modifying it to interact with the logical log. SCALEFS

augments SV6’s design with a disk file system DISKFS (that is based on the xv6 [10] file

system), and a logical log. We implemented the entire system in C++. The numbers of

lines of code change involved in implementing each component of SCALEFS are shown in

Figure 5-1.

While determining linearization points of operations we discovered a bug in the im-

plementation of MEMFS in SV6. In §3.3 we discussed how a rename where both the

source and the destination point to the same inode, presents complications in determining

the linearization point. MEMFS holds a lock only on the source which it deletes, without

acquiring any lock on the destination. Acquiring a lock on the destination would violate

the Scalable Commutativity Property. In order to determine the linearization point, we then

decided to protect reads with a seqlock.

However a rename in SV6 should have read the destination under a seqlock too, as

SCALEFS component lines of code changed
MEMFS 962
DISKFS 1764

logical log 2055

Figure 5-1: Number of lines of code change involved in implementing SCALEFS.
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is demonstrated by the following example. Consider two file names A and B that point to

the same inode, and two concurrent renames: rename(A,B) and rename(B,A). Let us

assume that the first rename reads B and finds it to point to the same inode as A, while the

second rename also reads A and finds it to point to the same inode as B at the same time.

The rename operations would then proceed to remove A and B respectively, and would end

up deleting both the file names. We modified MEMFS to read under a seqlock. With this

modification, one of the comparison checks fails and the problem is avoided.
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Chapter 6

Evaluation

We ran experiments to try to answer the following questions:

• How do file systems today fare in achieving multicore scalability?

• Does SCALEFS achieve multicore scalability?

• Does SCALEFS scale as well as SV6?

6.1 Methodology

To answer these questions we used COMMUTER [8], which is a tool that checks if shared

data structures experience cache conflicts. COMMUTER takes as input a model of the system

and the operations it exposes, which in our case is the kernel with the system calls it supports,

and computes all possible pairs of commutative operations. Then it generates test cases that

check if these commutative operations are actually conflict-free by tracking down references

to shared memory addresses. Shared memory addresses indicate sharing of cache lines and

hence loss of scalability, according to the Scalable Commutativity Property.

We augmented the model COMMUTER uses to generate test cases by adding the fsync

and sync system calls. Previously the model was tailored according to the the design of

SV6 which did not support these syscalls.

We do not measure the scalability of SCALEFS on a multicore system. All the results in

this chapter are obtained solely by running COMMUTER, but previous work has shown that
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if commuter does not report conflicts, then software scales well on actual hardware. We also

do not measure the disk performance of SCALEFS.

6.2 Does Linux file system achieve multicore scalability?

To answer the first question, we ran COMMUTER on the Linux kernel (v3.8) with an ext4

file system operating in data=ordered mode, which corresponds to SCALEFS’s fsync

model of flushing out data to disk before metadata changes are committed. The heatmap in

Figure 6-1 shows the results obtained. The green cells in the heatmap indicate no conflicts

between the corresponding row and column syscalls. Conflicts are indicated with colors

ranging from yellow to red, a shade closer to red indicating a greater fraction of conflicting

test cases.

Out of a total of 31539 commutative test cases, the heatmap shows 9443 of them (30%)

conflicting in the Linux kernel. Many of these can be attributed to the fact that the in-

memory representation of the file system is very closely coupled with the disk representation.

Commutative operations end up conflicting in the page cache layer. Previous work [8]

reports that some of these conflicts are caused by coarse-grained locks: for example, a lock

on the parent directory on creation of two distinct files.

6.3 Does SCALEFS achieve multicore scalability?

Figure 6-2 shows results obtained by running COMMUTER with SCALEFS. 99% of the

test cases are conflict-free, which is better than the 70% conflict freedom Linux achieves.

The green regions show that the implementation of MEMFS is completely conflict free

for commutative file system operations not involving sync and fsync, as there is no

interaction with DISKFS involved at this point. MEMFS simply logs the operations in per-

core logs, which is conflict-free. MEMFS also uses concurrent data structures —for example,

hash tables to represent directory entries, and radix arrays to represent file pages —which

also avoid conflicts.

SCALEFS does have conflicts when the fsync and sync calls are involved. An fsync
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Figure 6-1: Conflict-freedom of commutative operations in the Linux kernel using an ext4
file system. Out of 31539 total test cases generated 22096 (70%) were conflict-free.
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Figure 6-2: Conflict-freedom between commutative operations in SCALEFS. Out of 30863
total test cases generated, 30666 (99%) were conflict-free.
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call could conflict with a successful commutative rename, unlink, link and open

because fsync merges the per-core logs while MEMFS is logging those operations. The

merge might even have to wait for operations that are in flight, for which it reads the per-core

operation start and end timestamp counters. The rename, unlink, link and open calls

could be updating these counters at the same time, introducing conflicts.

A commutative rename, unlink, link, or open operation is conflict free with a

sync when the operation fails. Successful rename, unlink, link, and open opera-

tions never commute with a sync. So COMMUTER only generates test cases where these

operations either fail or have no effect, for example, renaming a file to itself. MEMFS does

not log such operations at all, so sync can process the logical log concurrently with the

execution of these operations without any conflicts. The green regions in the heatmap agree

with this reasoning.

Extending the same argument, an fsync is conflict free with an unsuccessful rename,

unlink, link, and open too. The yellow cells in the heatmap indicate some conflict free

test cases, which validates this claim.

Some fsync and sync calls conflict with read and write operations. These conflicts

are brought about by the way MEMFS implements the radix array of file pages. In order to

save space, the radix array element stores certain flags in the last few bits of the page pointer

itself, the page dirty bit being one of them. As a result, an fsync or a sync that resets the

page dirty bit conflicts with a read or write that accesses the page pointer.

MEMFS can avoid these conflicts by keeping track of the page dirty bits outside of the

page pointer. But in that case, as long as the dirty flags are stored as bits, there would be

conflicts between accesses to dirty bits of distinct pages. So in order to provide conflict

freedom MEMFS would need to ensure that page dirty flags of different pages do not share

a byte, which would incur a huge space overhead. Our implementation of MEMFS makes

this trade-off, saving space at the expense of incurring conflicts in some cases.

An fsync conflicts with a sync because they both try to obtain a lock on the per-core

logical logs in order to merge them. Two fsync calls on different files conflict on the

logical log as well.

The rest of the conflicts are between idempotent operations. Two sync calls are com-
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Figure 6-3: Conflict-freedom between commutative operations in SV6 with only an in-
memory file system. Out of 13664 total test cases generated 13528 (99%) were conflict-free.

mutative because they are idempotent, but they both contend on the logical log and any dirty

files they need to sync. Similarly two fsync calls on the same file are idempotent but they

conflict on the logical log as well as the file pages.

6.4 Does SCALEFS scale as well as SV6?

Figure 6-3 answers the last question. The figure shows results obtained from running

COMMUTER on the previous version of SV6 with only an in-memory file system. The

SV6 heatmap does not have columns for sync and fsync because SV6 did not support

these system calls due to the absence of a disk file system. Comparing this heatmap with

Figure 6-2 we can see that SCALEFS introduces no new conflicts between existing syscalls.
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Chapter 7

Conclusion and Future Work

We presented a file system design that decouples the in-memory representation from the

disk representation, allowing for multicore scalability along with durability and crash

consistency. We described a logging mechanism extending oplog [2] to use timestamps

passed as arguments to order operations in the per-core logs, and a merge algorithm that

waits for all operations before a certain timestamp to be logged before merging the per-

core logs. We also introduced a novel scheme to timestamp the logged operations at their

linearization points in order to apply them to the disk in the same order a user process

observed them in memory, thereby providing crash consistency. We implemented this design

in a prototype file system, SCALEFS, that was built on the existing SV6 kernel and we

analyzed the implementation using COMMUTER. The results show that the implementation

of SCALEFS achieves multicore scalability.

There are several issues we would like to explore in future work. One, measure SCALEFS’s

scalability on a multicore system to support the results obtained using COMMUTER; two,

quantify the memory overhead incurred by the dual file system representation (i.e., MEMFS

and DISKFS); three, measure SCALEFS’s disk performance; and four, extend the design of

DISKFS to support multiple disks and try to achieve I/O scalability too.
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