Sieve: Cryptographically Enforced Access Control for User Data in Untrusted Clouds

Frank Wang (MIT CSAIL), James Mickens (Harvard), Nickolai Zeldovich (MIT CSAIL), Vinod Vaikuntanathan (MIT CSAIL)

Boston Marathon

NY Marathon

Insurance

2

Boston Marathon

NY Marathon

Insurance

2

Boston Marathon

NY Marathon

Insurance

Problem: Curious storage provider or external attacker

Problem: Curious storage provider or external attacker

Contributions

- Sieve: a new platform that allows users to selectively and securely disclose their data
 - Sieve protects against server compromise
 - Sieve hides key management from users
 - Reasonable performance
 - Sieve supports revocation
 - Good for web services that analyze user data

Outline

- Sieve
 - Protocol
 - Optimizations
 - Revocation
- Implementation
- Evaluation

User

Storage Provider

Web services

User

Sieve user client

Storage Provider

Sieve storage daemon

Web services

User

Sieve user client

Storage Provider

Sieve storage daemon

Web services

User

Sieve user client

Storage Provider

Sieve storage daemon

Web services

User

Sieve user client

Storage Provider

Sieve storage daemon

Type=fitness
01101010
10101010
10101010
101100
101100
Type=financial

Web services

User

Sieve user client

Storage Provider

Sieve storage daemon

Web services

Sieve data import

(Year < 2013 AND Type=Fitness)

User

Sieve user client

Storage Provider

Sieve storage daemon

Web services

User

Sieve user client

Storage Provider

Sieve storage daemon

Web services

Sieve data import

Type=Fitness)

User

Sieve user client

Storage Provider

Sieve storage daemon

Web services

Threat Model

- Storage provider is a passive adversary
 - Adversary can read all data
 - Follows protocol
- Web services trusted with user data they are given access to
- User and her devices trusted

- Assume that user-specific ABE public/private key pair
- Three main functions

- Assume that user-specific ABE public/private key pair
- Three main functions

GenerateDecKey

Encrypt

Decrypt

- Assume that user-specific ABE public/private key pair
- Three main functions

- Assume that user-specific ABE public/private key pair
- Three main functions

- Assume that user-specific ABE public/private key pair
- Three main functions

- Assume that user-specific ABE public/private key pair
- Three main functions

- Assume that user-specific ABE public/private key pair
- Three main functions

- Assume that user-specific ABE public/private key pair
- Three main functions

- Assume that user-specific ABE public/private key pair
- Three main functions

Note: attributes and policy are in cleartext

Sieve with ABE

Sieve user client

Storage Provider

Sieve storage daemon

Web services

Sieve with ABE

Sieve user client

ABE Encrypt

Storage Provider

Sieve storage daemon

Web services

Sieve with ABE

User

Sieve user client

ABE Encrypt **Storage Provider**

Sieve storage daemon

Location=US, Year=2012, Type=fitness

01101010 10101010 10101110 101100 100

Year=2015, Type=financial Web services

User

Sieve user client

ABE Encrypt

(Year < 2013 AND Type=Fitness)

ABE GenerateDecKey

Storage Provider

Sieve storage daemon

01101010 10101010 10101110 101100 100

Location=US, Year=2012, Type=fitness

01101010 10101010 10101110 101100

Year=2015, Type=financial Web services

Sieve data import

User

Sieve user client

ABE Encrypt Storage Provider

Sieve storage daemon

Location=US, Year=2012, Type=fitness

01101010 10101010 10101110 101100

Year=2015, Type=financial Web services

Sieve data import

(Year < 2013 AND Type=Fitness)

User

Sieve user client

ABF Encrypt

Sieve storage daemon

Location=US, Year=2012, Type=fitness

01101010 10101010 10101110

Year=2015, Type=financial

Web services

Sieve data import

Location=US, Year=2012, Type=fitness

(Year < 2013 AND Type=Fitness)

User

Sieve user client

ABE Encrypt

ABE GenerateDecKey

Sieve storage daemon

Location=US, Year=2012, Type=fitness

01101010 10101010 10101110 101100 100

Year=2015, Type=financial

Web services

Sieve data import

(Year < 2013 AND Type=Fitness)

Challenges with ABE

- Performance
- Revocation

Reduce ABE Operations

- ABE is a public-key cryptosystem so slower than symmetric key cryptography
- Optimizations
 - Hybrid Encryption
 - Storage-based data structure

Reduce ABE Operations

- ABE is a public-key cryptosystem so slower than symmetric key cryptography
- Optimizations
 - Hybrid Encryption
 - Storage-based data structure

Data

Metadata block

Metadata block

Only have to perform symmetric key operations in future

Challenges with ABE

- Performance
- Revocation

Re-encryption with Hybrid Encryption

- Need to re-encrypt metadata and data
 - Easy to re-encrypt metadata block
 - How do we re-encrypt data object?
 - Download, re-encrypt, and upload
 - Requires substantial bandwidth and client-side computation

Solution: Key Homomorphism

- Allows changing key in encrypted data
 - Symmetric cipher that provides in-place reencryption
- Does not learn old key, new key, or plaintext
- More specifics on scheme are in the paper

Metadata Block

Data

Metadata Block

Symmetric

ABE (attrs, epoch = 0)

Metadata Block

Symmetric

ABE (attrs, epoch = 0)

Data

Symmetric

Metadata Block

Symmetric

ABE (attrs, epoch = 0)

Metadata Block

Symmetric

ABE (attrs, epoch = 0)

Symmetric

Metadata Block

Symmetric

ABE (attrs, epoch = 0)

Symmetric

Outline

- Sieve
 - Protocol
 - Optimizations
 - Revocation
- Implementation
- Evaluation

Sieve Implementation

Cryptography:

- Libfenc with Stanford PBC for ABE
- AES (no revocation) and randomized counter mode with Ed448 (revocation)

Sieve Implementation

Cryptography:

- Libfenc with Stanford PBC for ABE
- AES (no revocation) and randomized counter mode with Ed448 (revocation)

User

Sieve user client

~1400 LoC

Storage Provider

Sieve storage daemon

- ~1000 LoC
- MongoDB and BerkeleyDB

Web services

Sieve data import

Service-specific

Evaluation

- Is it easy to integrate Sieve into existing web services?
- Can web services achieve reasonable performance while using Sieve?

Evaluation Setup

- Multicore machine, 2.4 GHz Intel Xeon
- Web servers ran on machine's loopback
 - Minimize network latency
 - Focus on cryptographic overheads

Case Studies

- Integrated with 2 open source web services
 - Open mHealth, health: small data
 - Visualize health data
 - One week's health data: 6 KB
 - Piwigo, photo: large data
 - Edit and display photos
 - One photo: 375 KB

Easy to integrate with Sieve

- Lines of code required for integration
 - Open mHealth: ~ 200 lines
 - − Piwigo: ~ 250 lines

Acceptable performance for Open mHealth and Piwigo

Performance gap between AES and Ed448

Server per-core throughput is good

Open mHealth

- Storage write: 50 MB/s
- Web service import: 70 users/min (Ed448)

Piwigo

- Storage write: 200 MB/s
- Web service import: 14 photos/min (Ed448)

Revocation performance is reasonable

- Re-encrypt a metadata block (10 attrs): 0.63 s
- Re-key 100 KB data block: 0.66 s
- Generate new 10 attribute key: 0.46 s

Summary

- Required < 250 LoC to integrate with case studies
- Read and write data in reasonable amount of time
- Good per-core server throughput for storage writes and web service data imports
- Revocation functions take < 1 second

- Untrusted Servers
 - ShadowCrypt, SUNDR, Depot, SPORC, CryptDB, DepSky, Bstore, Mylar, Privly
- ABE and Predicate Encryption Storage
 - Persona, Priv.io, Catchet (ABE)
 - GORAM (Predicate)
- Access Delegation Schemes
 - OAuth, AAuth, Macaroons

Untrusted Servers

Solve different problems than Sieve

- ABE and Predicate Encryption Storage
 - Persona, Priv.io, Catchet (ABE)
 - GORAM (Predicate)
- Access Delegation Schemes
 - OAuth, AAuth, Macaroons

Untrusted Servers

Solve different problems than Sieve

ABE and Predicate Encryption Storage

No complete revocation and/or ability to recover from device loss

- Access Delegation Schemes
 - OAuth, AAuth, Macaroons

Untrusted Servers

Solve different problems than Sieve

ABE and Predicate Encryption Storage

No complete revocation and/or ability to recover from device loss

Access Delegation Schemes

Less secure and expressive than Sieve

Conclusions

- Sieve is a new access control system that allows users to selectively and securely expose their private cloud data to web services
- Efficiently use ABE to manage keys and policies
- Complete revocation scheme compatible with hybrid encryption using key homomorphism
- Easy to integrate and reasonable performance