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Abstract
Many cloud applications use both serverless functions, for
bursts of stateless parallel computation, and container orches-
tration, for long-running microservices and tasks that need
to interact. Ideally a single platform would offer the union
of these systems’ capabilities, but neither is sufficient to act
as that single platform: serverless functions are lightweight
but cannot act as servers with long-term state, while container
orchestration offers general-purpose computation but instance
start-up takes too long to support burst parallelism.

σ OS is a new multi-tenant cloud operating system that
combines the best of container orchestration and serverless in
one platform with one API. σ OS computations, called procs,
can be long-running, stateful, and interact with each other,
making them a good match for both serverless and microser-
vice tasks. A key aspect of the σ OS design is its cloud-centric
API, which provides flexible management of computation,
a novel abstraction for communication endpoints, σEPs—
which allow procs of a tenant to communicate efficiently but
prohibits procs from sending packets to other tenants—and
a flexible naming system to name, for example, σEPs.

Quick proc start-up is important for serverless uses. A key
enabling observation is that both serverless and microservice
applications rely on cloud services for much of the work
traditionally done by the local OS (e.g., access to durable
storage and additional compute resources). σ OS exploits
this observation by providing only a small and generic local
operating system image to each proc, which can be created
much more quickly than a container orchestration instance
since σ OS need not install application-specific filesystem
content or (due to σ OS’s σEPs) configure an isolated overlay
network.

Microbenchmarks show that σ OS can cold start a proc in
7.7 msec and can create 36,650 procs per second, distribut-
ing them over a 24-machine cluster. An evaluation of σ OS
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with two microservice applications from DeathStarBench,
a MapReduce application, and an image processing bench-
mark, shows that the σ OS API supports both microservices
and lambda-style computations, and provides better perfor-
mance than corresponding versions on AWS Lambda and
Kubernetes.

1 Introduction
A typical cloud tenant executes a variety of tasks on many ma-
chines: long-running analytics, short background job queues,
fleets of web and web API servers, sharded database servers,
and more. An important axis on which these workloads
vary is the rapidity with which tasks come and go. Some
are long-running stateful services, most recently typified by
microservices. A contrasting workload is serverless func-
tions [4, 17, 22, 33, 52], which are often invoked in large
parallel bursts and tend to be short-lived. For convenience,
this paper will refer to these two workload classes as “mi-
croservices” and “serverless.”

Cloud applications require infrastructure to deploy soft-
ware, manage execution and communication, and enforce
isolation. For microservice-style workloads, container or-
chestration [10, 21, 34] works well: each instance provides
the full facilities of a traditional operating system, and is
thus quite general-purpose. These instances, however, are ill
suited to serverless workloads. The core problem is that con-
tainer orchestration instances start slowly. This is reasonable
in static situations but a problem if instances come and go
rapidly. One source of slowness is that each instance involves
a user-level Linux installation: an isolated read/write file sys-
tem populated from an application-specific Linux container
image. Another is that, in order for cooperating instances to
communicate, the start-up process must configure each with
an IP address and a connection to an isolated overlay network.
Isolation is important when a provider has many independent
tenants. Finally, the mechanism for finding a machine with
enough resources to execute a new instance is typically not
fast enough for rapidly-initiated serverless functions.

An ideal platform would be able to initiate new work
rapidly enough for serverless uses, but also provide enough
flexibility to satisfy microservice applications. This would
simplify applications that need both kinds of support, for
example burst parallel functions that need to communi-
cate [27, 28] or need to keep state [45, 61], or micro-services
whose fleet size should vary with load. Such a platform would
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need fast instance start, powerful facilities for instances to
interact, and isolation for both execution and communication.

σ OS is a provider-hosted multi-tenant distributed oper-
ating system that addresses the above challenges. A key
enabling insight is that cloud applications depend chiefly on
cloud infrastructure, such as access to networked services,
which the trend towards “cloud-native” applications [30] illus-
trates. Such applications can be designed to require little from
the local machine beyond CPU, memory, and network access
to cloud services. This simplifying assumption allows σ OS
to provide both the communication services that microser-
vice workloads require and the creation speeds that serverless
workloads need.

A unit of work in σ OS is called a proc. σ OS assumes
that procs will use cloud storage, and so does not go to the
expense of creating per-proc local read/write file systems, but
instead shares generic read-only file systems among multiple
procs. σ OS provides a network addressing scheme (σEPs)
for procs that is more efficient than per-instance IP addresses,
but allows communication only among the procs of the same
tenant. σ OS isolates each proc in a lightweight “σcontainer,”
preventing the proc from using system calls not needed by
the σ OS API or runtime using Seccomp and AppArmor.

To help a tenant’s procs cooperate, σ OS provides a per-
tenant naming service (named) inspired by etcd [25] and
Plan 9 [60]. procs use named to register σEPs as well as
to store configuration information and small items of shared
and/or fault-tolerant state. As an example, σ OS has a fast and
scalable placement service that chooses a machine to execute
each newly spawned proc; this service organizes itself via
named.

Following Borg [71], σ OS asks developers to mark each
proc as either latency-critical (LC), with reserved CPU time
and RAM, or best effort (BE). σ OS schedules BE procs as
CPU and memory become available, either on the completion
of previous BE procs, or because LC procs are temporarily
under-using their reserved resources. The two classes capture
a common distinction in cloud tasks, between services that
are some or all of long-running, stateful, and in need of perfor-
mance guarantees (LC); and tasks that are some combination
of short-running, non-latency-critical, and in need of burst
parallelism (BE).

Because σ OS can create procs rapidly, it is suitable for
serverless tasks. Because procs can communicate with each
other, coordinate through the σ OS name system, and can be
long running, σ OS is also suitable for stateful microservices,
as well as offering this set of facilities to serverless tasks.

We have implemented a prototype of σ OS in Go [1] on
Linux. A microbenchmark of start times, critical for server-
less workloads, shows that σ OS has warm- and cold-start
times lower than those of AWS Lambda, Docker, and Ku-
bernetes; for cold-start 7.7 milliseconds vs 1.3 seconds, 2.7
seconds, and 1.1 seconds respectively. σ OS start times are
slower than Mitosis’ 3.1 milliseconds [75], though σ OS re-

quires neither Linux kernel changes nor RDMA and is suit-
able for stateful long-running microservices with strong net-
work isolation. A communication microbenchmark shows
that σ OS’s σEPs deliver 48% lower per-packet latency and
14% higher throughput than Docker and Kubernetes over-
lay networks at the cost of higher dial latency. To demon-
strate generality and application-level performance, we have
implemented proc-based versions of a MapReduce library,
the Hotel and Social Network web sites from DeathStar-
Bench [29], and an image-processing service. σ OS pro-
vides better throughput and latency for these applications
than those provided by Docker and Kubernetes, while also
delivering fairness among tenants and guaranteed resources
for LC procs (§6).

The contributions of this paper are: (1) the design of σ OS,
a new multi-tenant distributed operating system that sup-
ports both long-running stateful executions and short-lived
serverless tasks; (2) σEPs, a novel abstraction which pro-
vides low-overhead network communication between procs
with strong security isolation; (3) a σcontainer implemen-
tation of procs that provides strong isolation with quick
start; and (4) an evaluation showing that σ OS provides high
throughput for both serverless and microservice workloads.
The σ OS source code is open-source and at available at
https://github.com/mit-pdos/sigmaos.

2 Related work
Compared to prior work, σ OS’s main contribution is uni-
fying support for serverless and microservices tasks in a
single, cloud-centric platform with unique support for net-
work isolation through σEPs and for proc isolation through
σcontainers. This section discusses related work that σ OS
builds upon along the dimensions below. §6 measures the
start times of several prior systems and compares them with
σcontainers and σEPs.

Faster containers. Many techniques have been explored for
fast start, since it is critical for burst-parallelism and transpar-
ent scaling of tenants’ workloads. SAND [3] shares a single
container among the serverless functions of a given appli-
cation to ease local communication, and relies on process
boundaries to isolate functions within the application. For
many applications SAND’s isolation is too weak. Consider an
application which processes end-users’ images with a server-
less function invocation per image. In SAND, each image
would be handled by a different Linux process in a shared
container. If a malicious user could craft an image to exploit
a bug in the application, they could take control of the Linux
process handling the application’s function invocation and
corrupt or steal images of other users being handled by other
Linux processes in the application’s container. σ OS makes
this attack more challenging, as each image processing proc
would run in a separate σcontainer with strong isolation.

SOCK [55] introduces “lean” containers specialized for
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serverless functions; they cannot communicate directly, which
allows SOCK to avoid the cost of network isolation. σ OS’s
σEPs allow procs to communicate directly with low over-
head and strong isolation.

Particle [69] amortizes costs of configuring network names-
paces and overlay networks when launching batches of con-
tainers on a single node. σ OS’s σEPs don’t use network
namespaces or overlay networks, and allow quick start on
cold and warm nodes with strong network isolation between
tenants.

Sidecar-less service meshes [16, 38] provide network isola-
tion without per-container user-space proxies. However, they
rely on overlay networks and network namespaces. σ OS
applications use σEPs, which provide networking isolation
without these costs.

Isolation. AWS Lambda uses microVMs [2] to provide
stronger isolation than containers with less overhead than
a full VM; functions of the same tenant may share a mi-
croVM [73]. AWS Lambda targets serverless workloads
and isn’t suitable for microservice-style workloads, because
Lambdas cannot communicate directly and cannot maintain
long-term state (they may be terminated after 15 minutes).

Gvisor [32] reimplements much of Linux in user space
while restricting the set of system calls made available by
the underlying host. σ OS σcontainers also restrict the set of
system calls, to those needed to implement the σ OS API.

LightVM [49] can start a VM with a unikernel and devices
in 4ms. However, LightVM’s reported start time is not com-
parable to σ OS’s 1.8ms, because while σ OS provides strong
network isolation, LightVM’s start time does not include
the cost of establishing network isolation (i.e., creating and
configuring veth devices, network namespaces, and overlays).

Faasm [65] runs functions from different tenants in a shared
WASM runtime, which allows for quick start times, but may
be unsuitable for providers who are uncomfortable with the
isolation guarantees of a shared WASM runtime [31] or the
performance cost of WASM [39].

Fast application start. Application initialization after creat-
ing an isolated execution context (e.g., container or VM) is
often another major bottleneck in fast start. Catalyzer [24]
introduce sfork to start an application from a previously-
checkpointed application image. Faasm, and SEUSS [13]
also speed up application-start by checkpointing, respectively
a WASM runtime or a unikernel. REAP [70] records and
replays the working sets of functions to make starting from
a snapshot faster. AWS Lambda [9] and FaasNET [72] re-
duce image fetch time with caching and efficient distribution.
Mitosis [75] improves on Catalyzer’s sfork by introducing
rfork, which provides fast application start using remote
fork over RDMA, reducing the need for caching. The above
systems target serverless applications and aren’t suitable for
microservice-style workloads because these systems don’t
provide direct communication or network isolation. Like

rfork, σ OS leverages demand paging (but without modify-
ing Linux and RDMA) and fetches pages from other nodes
that have run the proc recently to start both serverless and
microservice-style proc quickly.

Single system image. σ OS’s naming system inherits the
idea of transparent access across a cluster from single-system
image distributed systems [15, 20, 54, 57, 60, 68] but σ OS
targets cloud computing and provides a single-system image
per tenant. σ OS extends Plan9’s 9P protocol [36], which is
widely supported1, and which allows σ OS to be administered
from the Linux command-line. σ OS extends 9P with σEPs,
watches to wait for a file to be created or removed (inspired
by Chubby [11], etcd [25], and ZooKeeper [37]), and RPCs
for services that don’t fit a file system interface. σ OS uses
etcd to implement the root of a tenant’s name space.

Schedulers. σ OS takes inspiration from prior work on
schedulers to allow the σ OS scheduler to quickly schedule
best-effort procs and guarantee resources to latency-critical
procs. Like the Kubernetes scheduler [10, 64, 71], σ OS
uses a centralized scheduler and resource requests to sched-
ule long-running computations carefully. σ OS takes ideas
from the distributed schedulers of Ray [74] and Sparrow [58]
to schedule BE procs quickly and scalably. σ OS’s two-
scheduler design resembles Mercury’s hybrid scheduler [44].
Like Apollo [8], σ OS uses real-time resource utilization to
inform scheduling decisions.

Improving serverless. AWS Step Functions [5] and Azure
Durable functions [6] simplify coordination and sharing
among serverless functions. Recent research has eased restric-
tions on serverless functions by proxying communication [27,
28], by shuffling data efficiently [3, 42, 59, 61, 65], by re-
suming terminated functions [78], by allowing functions to
communicate and maintain transient state [63], by providing
exactly-once semantics despite re-execution [40, 43, 62, 77],
by making function invocation fast [12, 17, 41, 53, 65], and
by running functions close to the data and providing transac-
tions [14, 46, 66].

σ OS is suitable for both serverless and microservice tasks,
since it provides fast start, communication among procs, and
support for stateful services. Like container orchestration sys-
tems, the σ OS scheduler allows procs to reserve resources
for latency-critical microservice tasks, which serverless sys-
tems don’t support. For example, although Faasm can run
serverless functions from different tenants, developers can-
not reserve resources for a faaslet that is long-running and
latency critical and the Faasm scheduler runs all faaslets
in round-robin, making it inappropriate for long-running,
latency-critical microservices.

1Linux, Windows Subsystem for Linux (WSL), QEMU, and Gvisor
support or use 9P.
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Figure 1: Each yellow box is a proc in the Hotel Web site. The cache
service consists of one proc per shard.

3 σ OS: a cloud-centric OS
σ OS’s goal is to provide tenants with a single platform that
supports both serverless and microservice tasks and to multi-
plex the workloads from different tenants on the provider’s
servers. σ OS’s API caters to cloud applications’ need to
launch computations, to communicate among those compu-
tations, and to share storage; it aims to provide interfaces
well-enough tailored to the cloud that traditional local OS
interfaces are not needed. This section describes σ OS and
its interfaces from the perspective of the tenant, while the
next section §4 describes how σ OS is implemented on the
provider’s hardware.

3.1 procs: application execution units
Developers write their applications in terms of procs, which
are executed by σ OS. To illustrate how developers use procs,
consider the following two running examples in this paper: mr,
a MapReduce library, and hotel, a microservice application
from DeathStarBench [29]. Both mr and hotel combine
tasks that are best implemented as microservices with tasks
that fit the serverless model.

The mr library creates a long-lived proc that coordinates
the job. This coordinator spawns a serverless-style mapper
proc for each shard of the input files and a reducer proc for
each reducer bin. Current cloud offerings require developers
to either use two platforms, a microservice platform to run
the coordinator and a serverless platform to run the mappers
and reducers, or run a coordinator together with a cluster of
long-lived worker processes, which fails to take advantage of
the elastic structure of MapReduce.

The hotel application creates a proc for the web front-
end, a proc for each microservice, and a proc for each cache
service shard. Figure 1 illustrates the proc-level organization
of the hotel application. Some of the hotel microservices,
like the sharded cache service and compute-intensive reser-
vation service, benefit from the elasticity of serverless. Addi-
tionally, the hotel application may run periodic background
jobs, such as image resizing or data analytics, which are a
good fit for the serverless model. A developer who wishes to
implement hotel on current cloud offerings would have to

Methods Description

Spawn(descriptor) Queue proc, return pid
Kill(pid) Kill proc pid
WaitStart(pid) Wait until pid has started
WaitExit(pid) Wait until pid has exited
Started(pid) pid marks itself as started
Exited(pid, status) pid marks itself as exited
WaitKill(pid) pid waits for kill signal

NewSigmaEP()→
(Listener, SigmaEP)

Create σEP

Accept(Listener)→
(Conn, SigmaEP)

Accept connection

Dial(SigmaEP)→ Conn Connect σEP
CloseEP(SigmaEP)→ nil Close σEP

Create(...), Open(...),
Close(...), Remove(...),
Rename(...), Stat(...),
Read(...), Write(...),
Lseek(...), Watch(...),

Access files in realm

AbsPath(path) Resolve ~local
OpenWatch(dir, func) Watch for changes in dir

Table 1: Summary of the σ OS interface.

compose several cloud platforms to implement the different
application tasks, and would be unable to make microservice
tasks as elastic as serverless tasks.

In σ OS, the tenant can use a single cloud platform and API
to implement all tasks of mr and hotel. Long-lived microser-
vices and short-running functions can both be implemented as
procs. The tenant does not provision worker machines when
implementing mr and hotel; σ OS is in charge of choosing
which of the provider’s machines should run each proc.

Table 1 shows the interface with which σ OS applications
create and control procs. An application creates a new proc
using Spawn, which returns a process identifier. The descrip-
tor argument describes the desired attributes of the proc:

• the σ OS name-system pathname of the binary to execute
(§3.3).

• arguments to be passed to the proc.

• whether the proc is to be latency-critical (LC) or best-
effort (BE), following Borg [71]. For example, a devel-
oper would likely specify BE for a map or reduce worker,
and LC for a microservice proc.

• for LC procs, the amount of CPU power to reserve
(typically chosen for peak expected load).

• for all procs, the amount of RAM to reserve.



func (c *Coord) runProc(p *Proc) {
for {
SigmaOS.Spawn(p)
exitStatus := SigmaOS.WaitExit(p.GetPid())
if exitStatus = SUCCESS {
break

} else if exitStatus = ERROR {
// Need to retry, so continue in loop

}
}
c.procDone(p)

}

func (c *Coord) runMR(procs []*Proc) {
for _, p := range procs {
go c.runProc(ch, p)

}
}

Figure 2: Simplified version of the code a MapReduce coordinator might
use to start map or reduce procs, wait for them, and re-start them on failure.

• optionally, a failure domain for situations where procs
should execute on independently-failing machines.

Spawn adds the proc request to a queue managed by the
σ OS scheduler (§4). This queue gives the scheduler a view
of demand, allows it to limit active load by deferring the start
of some procs, and allows it to make informed decisions
about how to distribute procs over machines. The caller of
Spawn can wait until the scheduler starts its child by calling
WaitStart. For example, hotel spawns microservices as
LC procs and waits until they are started before accepting
client requests. A proc signals to a parent that is running
using Started.

A parent proc can wait until its child finishes using
WaitExit, which returns an exit status provided by the
child’s call to Exited. σ OS itself may also call Exited
on behalf of a child proc if a machine crashes or a parti-
tion makes the proc unreachable; WaitExit returns an error
in this case. For example, the mr coordinator waits for its
mappers and reducers, as illustrated in Figure 2, and uses
the returned exit status to decide whether any procs must be
re-run due to failures.

3.2 Endpoints: proc communication
σ OS must provide procs with high-performance network
communication and must prohibit different tenants’ procs
from interfering with each other. σ OS does so using a novel
abstraction: σEPs. The σEP API, shown in Table 1, allows
σ OS to mediate connection setup, so that it can ensure that
communication only occurs within each tenant.

When a server proc wishes to create an endpoint for in-
coming network traffic from other procs it calls NewSigmaEP,
which requests σ OS to create an σEP and a Listener. The
σEP is an opaque shareable token identifying the new end-
point. The server proc calls Accept with the Listener to

lis, ep := SigmaOS.NewSigmaEP()
SigmaOS.Write("/s3/s3srv_3", ep.Marshal())
for true {
conn := SigmaOS.Accept(lis)
go HandleClientConn(conn)

}

Figure 3: Server code to create a σEP and register it under a name that
clients can connect to.

b := SigmaOS.Read("/s3/s3srv_3")
ep := UnmarshalSigmaEP(b)
conn := SigmaOS.Dial(ep)
SendMsgToServer(conn)

Figure 4: Client code to retrieve a σEP given its name, and connect to the
listening server.

wait for incoming connections. Any proc of the same tenant
can use the σEP to connect to the server by calling Dial.
Dial returns an connection which can be used to exchange
messages directly with the server proc.

An σEP is useable by any proc in the same realm. σEPs
are assigned by σ OS, however, so server procs must use the
facilities in §3.3 to publish σEPs under well-known names.

3.3 Realms: per-tenant global name spaces
σEPs provide procs a low-level mechanism to create servers
and establish connections. However, procs need a naming
system in order to exchange σEPs, interact with each other,
and share data. σ OS supports this interaction with a per-
tenant name space called a realm. A proc uses the σ OS API
to discover and access resources in a realm using pathnames
(inspired by Plan 9 [60]). A proc in one realm cannot name
or access σ OS resources in other realms.

The root of a realm’s file system is hosted by a name
server called named, implemented using etcd [25], a Raft-
replicated [56] persistent key/value store. σ OS-provided
services and procs extend the name space by hosting sub-
trees. As shown in Figure 3, a server which wishes to register
a subtree creates a file in the name space containing its σEP
object. When a proc traverses the name space and reaches
the σEP link file, it will transparently connect to the host-
ing server using the σEP API and continue its traversal by
communicating directly with the host of the subtree.

In this way, the logically global realm name space enables
transparent access to a distributed set of resources, including
filesystem-like services, named RPC services, proxies to stor-
age systems, and storage for small configuration files. The
namespace acts as a rendezvous so that procs, which are not
directly aware of where they or other procs are physically ex-
ecuting, can find each other when needed. Furthermore, since
a given pathname has the same meaning to all of a realm’s
procs, procs can directly exchange pathnames.

An example is σ OS’s s3 proxy service, which exposes
a tenant’s Amazon’s S3 buckets and keys in the tenant’s



name space. σ OS stores binaries for procs in the σ OS
S3 bucket and reads/writes them using pathnames (e.g.,
/s3/sigmaos/mr-mapper).

To help applications spread load, a directory can
list σEP link files for multiple proxy servers: /s3/
can contain s3srv_0, s3srv_1, etc. Then a path-
name with ~local asks σ OS to find a proxy on the
same machine. Now, mr mappers can read input
files (e.g., books from the S3 bucket gutenberg) using
/s3/~local/gutenberg/pg-being_ernest.txt in par-
allel through local s3 proxies and avoid copying each input
file twice over the network. The ~local pathname compo-
nent resolves a fundamental tension in the realm namespace
between locality and location-obliviousness. procs which
want to access local resources without having to know which
machine they are physically running on can include ~local
in the pathnames they access.

As another example of the use of ~local, σ OS ex-
poses per-realm scratch space on individual machines’ local
file systems under the pathname /ux/<machine-name>/;
a proc can read and write scratch files on both its own
machine and other machines with such pathnames. A
proc that wishes to share a file in its local scratch
space (e.g., /ux/~local/a.txt) with other procs first
resolves the pathname to an absolute realm-global path-
name with the AbsPath(pathname) API call, which trans-
lates /ux/~local/... to a global /ux/<machine-name>
name. This ability to transparently access remote stor-
age helps some data-intensive applications such as MapRe-
duce [45, 48, 61, 67]. Uniform access via pathnames makes
it straightforward for developers to choose between local and
remote (e.g., S3) storage.

3.4 procs and failures
Many virtual machine and container systems re-start instances
after a failure, which requires time-consuming persisting of
configuration information at creation time. σ OS does not
restart procs in response to failure, and the σ OS scheduling
layer does not persist proc descriptors, which helps decrease
creation cost. If a σ OS scheduling component crashes while
involved in spawning a proc, the spawn request may be
lost. σ OS guarantees that if such a failure prevented a proc
from being spawned, WaitStart/WaitExit will return an
error; the requesting proc can then re-issue the Spawn if
appropriate.

σ OS provides mechanisms to support fault-tolerant ap-
plications. A realm’s named provides fault-tolerant storage,
backed by etcd. procs can achieve fault-tolerance by storing
critical state in named; if such a proc fails, another can be
started (or already be waiting) to take over, and read the lat-
est state from named. named uses etcd’s support for leader
election to help fault-tolerant procs avoid split-brain (more
than one proc thinking it is the active leader).

As an example, the mr library creates three coordinator

machinei

Linux Kernel

schedd dialproxyd binfs ux σctr1

proc 1

σctr2

proc 2 ...

σctr j

proc j

global services

lcsched besched 1 ... besched n

Figure 5: On each of a provider’s machines, σ OS runs a schedd (for cre-
ating σcontainers), dialproxyd (for mediating network connection setup),
a binfs (for demand-paging proc binaries), and a ux (for exposing local
storage). For distributed scheduling, each machine’s schedd cooperates
with one global lcsched for scheduling LC procs and several bescheds
for scheduling BE procs. Not shown are provider procs that run in each
realm (e.g., named, s3).

procs. One is elected as the leader, and the other two are
standbys. The leader stores its progress (e.g., which mappers
have completed) in the directory /mr/coord/. If the leader
crashes, one of the standbys takes over and picks up from
where the crashed coordinator left off.

To survive a system-wide failure (e.g., all machines crash),
σ OS provides initd. An application can register a proc
with initd; when σ OS reboots, it restarts registered procs.
For example, the mr library registers the coordinator proc
with initd. initd stores its state persistently in named.

4 Implementing the σ OS API
Implementing the σ OS API poses three challenges: how to
both isolate procs strongly and start them quickly; how to
communicate efficiently with σEPs; and how to schedule
BE and LC procs. σ OS addresses these challenges using
the components shown in Figure 5. lcsched and besched
are global schedulers which place procs on machines. Each
machine runs a local scheduler agent (schedd), a network
isolation agent (dialproxyd), a proc binary server (binfs),
and a server providing temporary local storage (ux). This sec-
tion describes how σ OS uses Linux primitives to implement
these components.

4.1 Isolating procs with light-weight σcontainers
Each proc must be isolated to prevent it from disturbing
provider infrastructure, other realms’ procs, and (except as
allowed by the σ OS API) procs in the same realm. σ OS
isolates each proc with a σcontainer: a dedicated computing
environment with low initialization overhead. What allows
σcontainers to be light-weight is the fact that procs use only
a small subset of the underlying operating system’s facilities,
relying instead on σ OS’ cloud-centric API. This allows σ OS
to avoid many expensive steps that traditional container sys-
tems must take to provide a full, private Linux environment.
For example, σ OS does not set up a network namespace,
which would take around a hundred milliseconds, nor does



it create an overlay file system, which would take around 5
milliseconds (plus the time to install files in the overlay file
system). σcontainers provide procs with isolation as good
as traditional containers but with faster start times.

Creating procs. An executing proc consists of a Linux
process within an isolating σcontainer started by schedd
with the following steps:

• Namespaces: schedd gives the proc private Linux
namespaces for UTS, IPC, and PIDs. Because a proc
doesn’t need its own IP address (it uses σEPs and con-
nections established via dialproxyd), the σcontainer
doesn’t include a network name space and overlay net-
work. Further, because procs that need temporary local
storage talk to the local ux server rather than making
direct filesystem system calls, the σcontainer doesn’t
include an overlay file system.

• Jail: schedd jails the proc’s Linux process in a file sys-
tem with just a few read-only configuration files and
a few /proc pseudo-files. It mounts σ OS’s binfs
read-only on /mnt/binfs; binfs is a FUSE [7] server
through which the Linux kernel demand-pages the
proc’s binary.

• Seccomp: schedd uses a seccomp filter to allow only
system calls that allocate memory, create and manage
threads, handle a few signals, access randomness, and
manage timers. These calls are needed by the Go and
Rust runtimes. The filter forbids networking system calls
such as socket, connect, bind, accept, and listen,
since connection setup occurs via dialproxyd.

• AppArmor: schedd drops all Linux capabilities and
further restricts file system access using an AppArmor
profile. This profile denies many uses of signals, and
forbids access to directories in /proc other than the
proc’s own /proc directory.

• cgroups: schedd provides performance isolation by as-
signing the σcontainer to a cgroup. schedd pre-creates
and manages a pool of cgroups to move cgroup cre-
ation off the proc start path. schedd uses one cgroup
to isolate each realm’s BE procs, and another for each
realm’s LC procs. §4.3 describes how σ OS configures
cgroups to enforce resource reservations and utilize
idle resources.

After this setup, the σcontainer calls exec with the path
/mnt/binfs/<binary-name>. Linux demand-pages the bi-
nary via FUSE and binfs, allowing the proc to start quickly.
The first time a proc binary runs in a σ OS cluster, binfs
reads its pages from S3. binfs caches these pages on the
local disk, to speed future invocations of the same binary. The
former situation is “cold start”; the latter “warm start”. σ OS
tracks where binaries have recently run so that binfs can
take advantage of cached binaries on other machines in the
σ OS cluster.

σcontainer isolation. σ OS restricts a proc to 67 system
calls; the other 309 [47] are forbidden. For comparison,
Docker’s seccomp filter allows containers to use 352 sys-
tem calls [23]; Kubernetes allows 340 [19]. Gvisor, which
reimplements much of Linux in user space to reduce the num-
ber of host system calls a container requires, allows 55 system
calls [76].

σcontainer startup time. An σcontainer is quicker to start
than a traditional container because it doesn’t unpack a con-
tainer image, set up a network namespace (σ OS uses σEPs),
or create an overlay file system (procs cannot directly create
files on the local host). Additionally, σ OS performs some
expensive operations in advance of running any proc (e.g,
creating a pool of cgroups). Finally, σ OS leverages Linux’s
demand paging via binfs to allow the proc to start without
fetching the entire binary in advance.

4.2 σ OS endpoints
σEPs allow σ OS to control the setup of network connections
among procs without the expense of setting up a virtual IP
namespace for each proc. dialproxyd mediates all connec-
tion setup, both server-side and client-side, and verifies that
each leads to a proc in the same realm. Once dialproxyd
establishes and verifies a connection, it passes it to the proc
with UNIX-domain message passing, and the proc directly
reads and writes bytes on the socket. A σEP functions as a
network address that procs can use without needing to know
about host names, IP addresses, or port numbers.

Communication between procs. A typical scenario is that
a proc offering a service creates a new σEP by calling
NewSigmaEP, writes that σEP into a file in the named names-
pace, and waits for incoming connections with Accept.
Clients find the relevant σEP from named and call Dial.

Both Accept and Dial are IPCs to the local dialproxyd,
which makes the required kernel TCP socket calls. Initially
the new connection connects the two local dialproxyds,
which interact to verify that the two procs’ realms are the
same, and then passes the connection file descriptors to the
procs via UNIX-domain message passing. After that, the two
procs can communicate directly over the TCP connection
without further involvement by dialproxyd.

Outgoing communication with external services.
dialproxyd allows procs to connect to entities outside of
σ OS by creating and connecting to special external σEPs.

A malicious proc may try to create an external σEP that
refers to a server proc in another realm. To prevent this, we
expect the provider to deploy σ OS in a private network with a
known range of IP addresses. dialproxyd inspects external
σEPs passed to it during connection setup to ensure that the
IP addresses they contain lie outside its private range2.

2An alternate design implemented in σ OS, which does not rely on IP
address verification, has the client’s and server’s dialproxyd exchange a



Incoming communication from external services. procs
may need to accept connections from entities outside of σ OS,
such as HTTP clients. As is standard practice in Kubernetes
and other container systems, we expect the client to config-
ure a provider-managed IP endpoint and load-balancer to
proxy connections to procs. The load-balancer would speak
the dialproxyd identity verification protocol to ensure that
external connections are delivered to the intended realm.

4.3 Scheduling procs
From the provider’s perspective, σ OS’s job is to decide the
placement of spawned procs onto the provider’s machines,
and, within each machine, to decide how to allocate CPU
time and memory to running procs.

Placement. LC and BE procs have different placement re-
quirements. LC procs must receive their guaranteed CPU
and RAM, so σ OS must take care that the sum of LC reserva-
tions on each machine is less than capacity. BE procs should
use unreserved CPU and RAM, as well as reserved LC CPU
currently left idle, though BE procs cannot be allowed to use
RAM reserved by LC procs even if currently idle. Realms
that have BE work should get roughly equal shares of total
unreserved provider CPU, though a real deployment would
likely use a different policy (e.g., based on resource pricing).

σ OS places LC and BE procs with different mechanisms.
When called for an LC proc, Spawn sends the descriptor
to the provider’s lcsched, a single provider-wide service.
lcsched tracks, for each of the provider’s machines, how
much CPU power and RAM are currently reserved for ex-
isting LC procs on that machine. When a Spawn request
arrives, lcsched chooses a machine with sufficient unre-
served resources (if one exists) and forwards the request to
the schedd on that machine; otherwise lcsched queues the
proc request until a machine becomes available.

Because BE procs may be created at a high rate, σ OS
shards the work of BE placement over a set of besched
servers running on a subset of the provider’s machines. For a
BE proc, Spawn sends the descriptor to a randomly selected
besched server. That besched adds the descriptor to a pri-
vate queue of procs waiting to run. Meanwhile, the schedd
on each of the provider’s machines monitors the machine’s
idle CPU time and idle RAM (less RAM reserved by LC
procs), and if there are significant spare resources, sends a re-
quest to a randomly selected besched. That besched looks
for a queued proc descriptor with a compatible memory re-
quest, giving each realm an equal chance. If the besched
has nothing relevant queued, the machine’s schedd asks a
different besched.

Enforcement. schedd uses Linux cgroups to reserve CPU
and memory for LC procs, and a combination of the
cgroups network classifier and Linux’s Traffic Control tc

cryptographically authenticated setup message to verify that connections
internal to σ OS are initiated via dialproxyd.

Component LOC

Core proc/σcontainer 3,889
lcsched procq schedd 2,340
net/σEP 1,244
file API 5,694
realm: named realmd 2,419
s3 ux db 1,486
boot 957

Libraries client 4,059
server 3,418

Applications hotel 2,082
socialnet 2,197
cache 693
mr 1,639
imgprocess 447
kv 1,931

Total 34,495

Table 2: Lines of Go code for σ OS’s components (excluding etcd, etcd’s
Raft [26], and protoc-generated files for protocol buffers).

to prioritize LC procs’ network traffic. schedd configures
cgroups so that BE procs receive equal fractions of CPU
reservations left idle by LC procs.

4.4 σ OS prototype details
Most of σ OS is written in Go; Table 2 shows each com-
ponent’s lines of code. To avoid the cost of exec-ing a Go
binary, schedd uses a trampoline program when starting a
new σcontainer, exec-uproc, written in Rust.
proc executables are statically-linked ELF files. Static

linking results in larger binaries than dynamic linking, but
allows the root file system to be generic, since it doesn’t
have to provide proc-specific files such as application shared
libraries.

σ OS supports interpreted languages like Python, which
import modules at runtime dynamically, using the σ OS API.
The developer provides a statically-linked version of the inter-
preter of their choice (e.g., CPython) as the proc binary, and
σ OS provides a shim that intercepts the interpreter’s accesses
to module files and loads them via the σ OS interface.

5 σ OS applications
Table 2 lists the lines of code for each application. hotel
(the running microservice example) and socialnet are ports
of the corresponding DeathStarBench applications originally
written for Kubernetes. cache is a sharded in-memory cache,
much like memcached, used in hotel and socialnet. mr is
the running example of the MapReduce library. imgprocess
is an image processing service that spawns an LC coordinator
proc to manage resizing images; for each image, it spawns a



BE proc that stores its results in S3. The coordinator handles
failures of imgprocess procs.

To demonstrate that σ OS is complete enough to build
fault-tolerant microservices, we built kv; it implements a
linearizable, sharded, fault-tolerant in-memory key-value ser-
vice. kv has groups of three procs; each group replicates its
shards using etcd’s Raft library [26]. kv’s balancer can add
a new group in response to changes in load; it moves shards
between groups by spawning a “mover” proc for each shard
with keys that must be moved. The balancer uses a realm’s
named to store the configuration for each epoch so that client
procs can look up which group they should contact for a
given shard. Clients set a watch on this configuration file to
be alerted of a new configuration. The balancer itself has two
standby procs, which will elect one as the new balancer if
the current balancer fails.

Porting applications to σ OS. σ OS does not provide out-
of-the-box backwards compatibility for existing serverless
or microservice applications. However, in our experience,
porting an application to σ OS does not require major applica-
tion rewriting; most σ OS ports involve switching some func-
tion calls in the existing codebase with analogous functions
from the σ OS API. σ OS supports cloud APIs and access
to databases like MongoDB well via proxies (e.g., s3, db)
and σEPs. Additionally, container- and serverless-structured
applications are already broken up into execution units which
map naturally onto procs.

σ OS and σEP APIs (Table 1) provide replacements for
most APIs that cloud applications use. σ OS applications
Read/Write files in the realm instead of using the local file
system or the S3 Get/Put API, spawn procs instead of fork-
ing Linux processes or Lambdas, and access the network
using σEP APIs like NewSigmaEP (analogous to listen)
and Dial. The NewSigmaEP and Dial APIs are similar to
those used to start servers and initiate network connections in
Go and other high-level languages.

σ OS developers can port web server front-ends like Nginx
to σ OS with σEPs (§4.2). σ OS enables patterns similar to
Kubernetes to in which web servers register public services
with cloud provider load-balancers [35].

We ported hotel and socialnet from DeathStarBench,
and most changes were "find-and-replace-all" operations.
σ OS versions use the realm for service discovery instead
of a service registry and call NewSigmaEP instead of listen
to start a server and accept connections. σ OS’s RPC library,
implemented with σEPs, replicates the core of gRPC.

Applications that use a wide range of Linux system calls
(e.g., shared memory) are harder to port to σ OS. In our
experience, most cloud applications don’t do this. They rely
on cloud APIs and are organized into containers and serverless
functions.

Summary. There are two observations from the experience
of implementing this set of applications. First, they can be

implemented using just the σ OS API. One reason is that the
applications are cloud-centric and use few local OS services.
Another is that σ OS allows a provider to export services
that applications need through proxies (e.g., ux, s3, db, etc.),
which can be accessed using the σ OS API. A final reason
is that today’s programming language like Go come with a
large ecosystem of portable packages that allow application
code to avoid much reliance on the local operating system.

The second observation is that σ OS can support both mi-
croservice and serverless-style applications in a single frame-
work. Furthermore, some applications combine both LC and
BE procs. For example, in kv, the caching procs are LC
while the mover procs, which copy shards between groups,
are BE.

6 Evaluation
The primary goal of σ OS is to provide a single API which
seamlessly supports both serverless and microservice applica-
tions. To support short-running and burst-parallel serverless
applications, σ OS must start procs with low latency and
high scheduling throughput. To support microservices, σ OS
must enable low-overhead communication between procs
and allocate CPU to guarantee resource requests and achieve
high utilization.

This section evaluates whether σ OS achieves this goal by
answering the following questions:

1. Do σcontainers allow fast proc start, and can σ OS
schedule procs at high throughput? (§6.1)

2. Do σEPs provide high-performance networking? (§6.2)

3. Do σ OS applications perform as well as their serverless
and container-based counterparts? (§6.3)

4. Can the σ OS scheduler achieve good utilization with BE
serverless tasks and LC microservice tasks, and provide
fairness between tenants? (§6.4)

6.1 Fast proc start with σcontainers
We measure the start latency of σ OS procs and compare it
to several state-of-the-art platforms. For each platform, we
time from the moment spawn is invoked until the first line
of main executes. All but the AWS Lambda and Mitosis
measurements use two AWS EC2 m6i.4xlarge VMs with 16
vCPUs backed by 2.9GHz Intel Ice Lake 8375C CPUs, 64
GiB of memory, up to 12.5Gbps network bandwidth, and up
to 10 Gbps EBS burst bandwidth. The client invoking the
function runs on one machine, and the platform runs on the
other. We do not know what hardware AWS uses to run the
Lambda functions. The Mitosis numbers are as reported in
the Mitosis paper [75], which uses similar speed CPUs to the
above configuration.

The proc being started is a simple BE Hello World pro-
gram written in Rust to be able to measure σcontainer start
times while excluding the 15 milliseconds that the Go runtime
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Figure 6: Start latency for a Hello World function on several platforms.

takes to start. Minimizing language runtime and application
initialization time is an orthogonal problem, and existing tech-
niques (like checkpoint-restore) are compatible with σ OS.

Start latencies. Figure 6 shows the results. First we consider
cold- and warm-start times for AWS Lambda, Docker con-
tainers, and Kubernetes (K8s) pods. All three systems isolate
execution units using containers, and AWS Lambda addition-
ally isolates functions with a MicroVM. Cold-starts in these
systems require downloading and unpacking the container
image (and, in AWS Lambda, additionally involve starting a
MicroVM), whereas warm-starts exclude these costs.

σ OS procs warm-start significantly faster than the other
three systems’ containers, because the other three systems
start full containers with overlay file systems [73]. σ OS’
σcontainers (§4.1) avoid this cost because σ OS offers neither
custom file system contents nor direct file system write access;
instead, procs access remote or (via the ux server) local stor-
age using the σ OS API. Additionally, σ OS’ dialproxyd
(§4.2) design avoids expensive network isolation operations,
and σ OS moves expensive cgroup creation off the critical
path. σ OS’ cold-start latency benefits from binfs, which
demand-pages proc binaries over the network.

Mitosis [75] is a platform that provides fast start of con-
tainers for serverless functions—its containers and scheduler
are not suited to stateful, long-running microservices—using
a new remote-fork primitive, implemented using RDMA and
a modified Linux kernel [75]. Mitosis thus sets a high bar
for how fast serverless functions can be started. To compare
with Mitosis, we benchmark σ OS on an AWS EC2 instance
with the same CPU clock rate as reported in the Mitosis pa-
per3. Cold-starts in Mitosis involve remote-forking a running
serverless function from a remote machine and creating a
Mitosis "lean container" for the function. As expected, cold
starts in σ OS are slower than Mitosis (7.7 ms vs. 3.1ms),
because σ OS provides network isolation, σ OS’ proc binary
demand-paging does not make use of specialized networking
hardware (e.g., RDMA-capable NICs), and σ OS runs atop
an unmodified Linux kernel, which adds latency as the paged
proc binary data moves back and forth across the user-kernel
boundary.

3We were unable to access the RDMA hardware and software setup
required to run Mitosis and so report the Hello World benchmark numbers
from the Mitosis paper.

Time (ms)

Placement 0.42

σcontainer
Linux NS 0.28
FS jail 0.42
seccomp 0.46
AppArmor 0.02
exec 0.37

Total 1.97

Table 3: Breakdown of warm-start time for a Hello World BE procwritten in
Rust. Operations above the line are costs of proc placement, which includes
time spent in the besched queue, whereas operations below the line are
machine-local costs of σcontainer creation.

σ OS component Max Throughput
(procs/sec)

lcsched 50,144
besched shard 53,306
proc start (1 machine) 1,590
proc start (24 machines) 36,650

Table 4: Maximum throughput of some components of proc creation on
Cloudlab c220g5 machines.

Faasm [65], a serverless platform for WASM programs,
achieves low start time by relying on the WASM runtime
for isolation and for restricting system calls. Faasm cold-
starts include the cost of downloading the WASM program
from a local Redis instance, whereas warm-starts exclude
this cost. σ OS has slower warm-starts than Faaslets, because
σ OS pays the cost for separate address spaces and other
OS isolation techniques such namespace isolation. σ OS
has faster cold-starts than Faasm because binfs demand-
pages proc binaries, whereas Faasm downloads the entire
WASM program before executing the function. We took the
Faasm measurements without network isolation enabled; with
network isolation, the cost of starting Faasm functions would
likely be much higher.

Breakdown of proc start latency. Table 3 breaks down BE
procs’ warm-start latency, including the time required for
Spawn to send the descriptor to besched, place the proc onto
a schedd instance, create a σcontainer, and start the proc.
The cost of a warm-start in σ OS is dominated by σcontainer
setup time, which consumes nearly 80% of the total.

Cold-starts, which occur when a realm runs a given proc
binary on a machine for the first time, include the additional
time for binfs to page the proc binary’s first few pages over
the network.

Spawn throughput. There are two main tasks that might
limit the throughput at which σ OS can spawn new BE procs:



the sharded besched placement service (§4.3), and the time
required to create the proc on the selected machine (§4.1).
Both throughputs can be scaled up (by running more besched
shard servers, and installing more machines, respectively).
The following experiments examine quickly a single besched
can process spawn requests, how quickly a single machine
can create procs, and the end-to-end achievable proc start
throughput on a cluster of 24 machines. Table 4 summarizes
the results.

To find how many BE Spawns per second a single besched
can handle, we run a σ OS cluster consisting of 24 CloudLab
c220g5 machines, scheduled by a single besched. An open-
loop client on a remote machine Spawns "dummy" BE procs
at a fixed rate for 10 seconds. The BE procs never actually
run, but they traverse the full BE proc scheduling path; they
are spawned onto the besched, which places them onto a
machine’s schedd, which ignores them. The maximum client
Spawn rate at which the single besched can keep up is 53,306
per second.

Once besched has placed a proc on a machine, that ma-
chine’s schedd needs to create a σcontainer and start the
proc. To evaluate the throughput limits of this task on a
single machine, an open-loop client Spawns BE Rust Hello
World procs at a set rate, regardless of how quickly σ OS
responds. For this benchmark, a single besched, running on
a dedicated machine, schedules the Hello World procs onto
a single schedd running on a different machine.
proc start throughput saturates and queues begin to build

up once the Spawn rate exceeds 1,590 procs per second. The
bottleneck is Linux mount namespace creation which occurs
every time a σcontainer is created and involves taking a global
lock in Linux.

We evaluate the end-to-end sustainable proc start through-
put on a cluster of 24 CloudLab c220g5 machines by run-
ning an open-loop client which Spawns BE Rust Hello World
procs at a set rate, independently of how quickly σ OS starts
them. A single besched places the procs across the cluster.
σ OS is able to start up to 36,650 procs per second before
the Spawn rate exceeds the start rate.

Even as the Spawn rate approaches the maximum start
rate, σ OS’ median and 90% scheduling latencies remain low.
σ OS achieves 36,650 proc starts per second with p50 start
latency of 5.8 ms and a 90% start latency of 11.6 ms. To put
σ OS’ proc start throughput in perspective, we compare to
Mitosis, which can fork 10,000 containers across multiple ma-
chines in one second. Mitosis’ container fork rate translates
to 97 container starts per core per second, and σ OS’ peak
proc start rate translates to 76 proc starts per core second.
σ OS achieves this performance without kernel changes or
RDMA.

Summary: σ OS starts procs quickly and with high through-
put. As a result σ OS is a good fit for applications struc-
tured as many short-running procs. Finer-grained procs
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give providers more frequent opportunities to rebalance re-
source allocations, and to smooth out short drops in resource
utilization as realms’ application load varies.

6.2 σEP performance
To determine the performance of σEPs, we benchmark net-
work throughput and latency between two Cloudlab c220g5
nodes using different network isolation techniques. The mea-
surements use a simple Go client and server that communicate
with TCP; the σ OS version does this via the σEP API. Dial
latency is the time to establish a new TCP connection. Per-
packet latency is half a TCP round trip. Throughput is the bit
rate at which the client can write 1MB buffers to the server.
All measurements are the average of 1000 trials.

Figure 7 compares σ OS’ σEP-isolated network perfor-
mance to no network isolation, isolation using Docker over-
lays, and isolation using Kubernetes (K8s) overlays. The
σ OS dialproxyd-mediated Dial protocol makes connect-
ing more expensive than without network isolation. Once
connected, σEPs provide the same latency and throughput
as no network isolation, since dialproxyd sends the TCP
socket to the proc, which reads and writes directly. Docker
and K8s, in contrast, forward all connection data through a
local proxy process.

6.3 σ OS application performance
To evaluate application-level performance with σ OS, we
compare σ OS-mr to Corral [18] (labeled λ -mr), a serverless
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MapReduce framework for AWS Lambda, σ OS-hotel to
K8s-hotel, and σ OS-socialnet to K8s-socialnet .

σ OS-mr vs. λ -mr. We run σ OS-mr on an AWS Virtual
Private Cloud (VPC) composed of 16 EC2 t3.xlarge VM
instances. Each instance has 4 vCPUs, 16GiB of memory, and
a 20GiB EBS volume. Each instance has up to 5Gbps network
burst bandwidth, and 2,085Mbps EBS burst bandwidth. To
make the comparison fair, we provision λ -mr’s lambdas with
1760MB of memory, which gives them the equivalent of 1
vCPU, and disable 2 vCPUs on each of σ OS’s 4-core VMs.
Since λ -mr starts 32 lambdas in parallel for both the map
and reduce phase, this gives λ -mr and σ OS-mr the same
resources when σ OS-mr runs on 16 machines. Both σ OS-mr
and λ -mr are written in Golang, and pay for the cost of the Go
runtime (e.g., garbage collection). The input is 10GB from a
snapshot of English HTML Wikipedia pages.

The input and final output files for both versions of MapRe-
duce are stored in S3. For λ -mr, the intermediate files are also
stored in S3. To evaluate the benefit of σ OS-mr’s transparent
access to σ OS-exposed local storage, we run σ OS-mr in two
configurations: σ OS (s3) and σ OS-mr (ux); the latter writes
and then remotely reads intermediate files via ux, σ OS’ local
file server.

Figure 8 shows the results. σ OS-mr performs comparably
to λ -mr with intermediate files stored in S3, and 1.2× faster
with intermediate files stored on local disk (really EBS) via ux.
ux helps because it has higher throughput than S3. σ OS-mr
can transparently take advantage of ux’s local scratch space
exposed by just changing the application’s intermediate file
pathnames.

σ OS-hotel vs. K8s-hotel and σ OS-socialnet vs.
K8s-socialnet . We compare σ OS-hotel to K8s-hotel
and σ OS-socialnet to K8s-socialnet on 8 Cloudlab
c220g5 machines. Each machine has two Intel Xeon Sil-
ver 4114 10-core CPUs at 2.20 GHz, 192GB of memory,
and a 10Gb Intel X520-DA2 NIC. To induce contention for
resources and force σ OS and Kubernetes to place microser-
vices on multiple hosts, all but 4 CPUs are disabled on each
machine.
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Figure 10: CPU utilization of 4 realms running BE imgprocess jobs starting
at different times, on a 24 AWS t3.xlarge VM VPC scheduled by 2
besched shards. σ OS dynamically resizes each realm’s CPU allocation
in response to load in order to give each realm an equal share of the cores.
When one job’s load decreases, σ OS quickly reallocates its idle cores to the
realms with remaining work.

Figure 9 shows the latency (average and 99%) and the
peak throughput using the workload generator from Death-
StarBench, running the search workload. Peak throughput
is the maximum client request throughput for which median
latency stays below 10ms. σ OS yields 42% lower 99% la-
tency under low load for σ OS-hotel and 47% lower tail
latency for σ OS-socialnet under low load. σ OS enables
hotel and socialnet to achieve 1.68× and 3.01× higher
peak throughput than Kubernetes.

The σ OS implementations of hotel and socialnet out-
perform the Kubernetes implementations because σEP com-
munication is more efficient than Kubernetes overlay network-
ing, as shown in §6.2.

Summary: σ OS’s abstractions perform well and allow
stateless- and microservices-style applications to achieve high
performance.

6.4 Scheduling procs
σ OS’s scheduler goals include sharing resources fairly
among realms with BE work and achieving high utilization
by allowing BE procs to use resources reserved but left idle
by LC procs (§4.3). This section evaluates whether σ OS
meets its scheduling objectives through case studies in which
σ OS multiplexes multiple realms’ BE workloads and realms
with BE and LC workloads.

Fair sharing between realms with BE procs. We evaluate
σ OS’ ability to divide resources equally between realms with
BE work using imgprocess, a representative extract, trans-
form, and load (ETL) application [50, 51]. imgprocess in-
volves a short proc to process each 50KB input image. Of the
665ms average time for each imgprocess proc, 503ms are
CPU-intensive work, and the remainder is I/O. imgprocess
input and output images are stored in ux since ux provides
high-throughput access to storage.

Figure 10 shows four realms, each running a job consisting
of many imgprocess procs, and illustrates how σ OS shifts
resources between them. The graph shows the CPU utilization
of each realm as a function of time. There are 24 AWS
t3.xlarge machines, each with four cores, and 2 besched
shards which distribute BE procs among them. Realm 1’s
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Figure 11: σ OS multiplexing two realms across a cluster of 8 Cloudlab
c220g5 machines each with 4 cores available, under varying load. One realm
runs σ OS-hotel, and the other runs imgprocess. As σ OS-hotel’s load
increases, it regains its reserved CPU time from the BE imgprocess realm.
When LC load drops, the BE realm is allowed to use the idle CPU time.

job starts at time zero, Realm 2 starts 10 seconds later, Realm
3 starts at 20 seconds, and Realm 4 starts at 30 seconds.

Each realm Spawns imgprocess procs at a fixed rate for
30 seconds, and then stops and waits for all its procs to
complete. imgprocess procs are spawned with a 1.5GB
memory request, and procs which cannot fit on any machine
once spawned are queued at besched.

σ OS gives all 96 cores’ worth of CPU time to Realm
1. The graph shows that Realm 1 uses almost all of the
CPU time, with the shortfall lost to I/O. As Realm 2 starts
to enqueue procs, σ OS begins dequeueing procs from each
realm in equal shares. The CPU utilizations of Realm 1 and
Realm 2 quickly equalize because imgprocess procs are
short-running, giving many resource rebalancing opportuni-
ties to the besched cluster-level scheduler. Together with the
cgroups policies set up by schedd, this results in a rapid
redistribution of cores between the realms as procs exit and
release their memory requests.

Similarly, σ OS redistributes cluster CPU time when
Realms 3 and 4 start, giving each an equal share. As each
Realm’s work ends, σ OS gives more CPU time to the remain-
ing realms.

Summary: σ OS automatically manages the allocation of
compute resources to realms.

Guaranteeing LC reservations. Figure 11 shows a situation
in which one realm runs a sequence of imgprocess procs
while another runs the σ OS-hotel site. The σ OS-hotel
procs are all LC, and the imgprocess procs are all BE.
The x-axes show time; σ OS-hotel receives requests from
time 20 until time 100, but receives a burst from times 60

to 80. The upper graph shows the latency with which the
σ OS-hotel answers web requests; the second graph shows
the σ OS-hotel request rate; the third shows imgprocess
throughput; and the bottom graph shows how σ OS divides
cores between the two realms.

When σ OS-hotel is under low load, imgprocess re-
ceives the majority of the cores in the cluster and can achieve
high processing throughput. In fact, those cores are reserved
for the σ OS-hotel procs (since they are LC), and merely
borrowed for imgprocess when σ OS-hotel procs under-
utilize their reservations. When σ OS-hotel input load
increases, σ OS’ cgroups configuration causes Linux to
shift reserved CPU time back from imgprocess to σ OS-
hotel. Although cgroups are able to preferentially give
σ OS-hotel CPU time when it is under high load, the Linux
cgroup API limits the degree to which one process can be
prioritized over another. This causes σ OS-hotel to experi-
ence occasional latency spikes under periods of particularly
high load.

Summary: σ OS’s resource management helps utilization:
the σ OS-hotel application’s reserved resources are available
when needed, without preventing other tasks from using those
resources when the σ OS-hotel load is low.

7 Discussion and future work
The σ OS prototype lacks features that industrial orchestration
systems have; for example, σ OS has limited support for
authorization within a realm: AWS S3 tokens (e.g., to allow
a proc to limit a child proc to specific S3 buckets) and
the traditional ACLs that σ P inherits from 9P. As another
example, the prototype considers memory and CPU resources,
but not other resources such as GPUs.

For some services, it will be too much work or infeasible
to port them to the σ OS API, because, for example, their
code base is large or they rely on specific system calls. Such
services can be incorporated in σ OS through proxies such as
s3 and db or by running the service with its own container
image and modifying the service to advertise itself using the
σ OS libraries in a realm’s namespace.

8 Conclusion
This paper presented a multi-tenant cloud operating system,
σ OS, that supports both microservices and serverless func-
tions by combining the best features of container orchestration
systems and serverless frameworks. σ OS provides develop-
ers with a cloud-centric API that allow developers to structure
their applications using procs and that provides a shared
namespace per realm, which hides machine boundaries and
allows procs to easily communicate and coordinate. σ OS
can efficiently multiplex the procs of different tenants on
the provider’s hardware and responds automatically to shifts
in load. Finally, by restricting procs to the σ OS interface,



σ OS can use σcontainers to cold start procs rapidly (in 7.7
ms) with strong isolation.
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