
Brief Announcement: Building Data Structures on
Untrusted Peer-to-Peer Storage with Per-participant Logs

Benjie Chen, Thomer M. Gil, Athicha Muthitacharoen, and Robert Morris
{benjie,thomer,athicha,rtm}@lcs.mit.edu

MIT Laboratory for Computer Science

Introduction
Structured peer-to-peer distributed hash tables (DHTs) provide a
simple API for reading and writing key/value pairs (often called
blocks). A DHT typically takes care of finding a network host
to store each key/value pair; replicating data for availability; and
checking that retrieved blocks have not been tampered with. The
DHT interface is fairly low level, much like the sector read/write
interface of a disk drive. A DHT-based distributed application typ-
ically maintains complex data structures on top of the DHT, with
blocks containing pointers (keys) to other blocks. To access a data
structure, participants of the application read and write blocks, but
do not communicate with each other.

A DHT-based application faces four challenges. First, if a par-
ticipant of the application crashes while modifying a DHT-based
data structure, the data structure may be left in an inconsistent
state. Second, because participants typically manipulate a shared
data structure independently (i.e. without sending operations to a
single server or server cluster), an application with concurrent par-
ticipants also faces the challenge of providing consistency without
direct use of serialization. Third, peer-to-peer systems are often
used in situations where participants do not fully trust each other;
thus another problem is how to defend against participants who
maliciously damage the shared data structure. Fourth, DHTs typi-
cally replicate data in such a way that multiple partitions may have
a complete copy of the data structure if a network outage occurs;
thus applications using DHTs may experience conflicting updates
in different partitions.

L
∗ is a set of techniques for maintaining consistent data struc-

tures on top of a DHT. L
∗ represents a data structure as a log of

operations in the DHT, with a separate log per participant. That
is, an application using L

∗ does not directly store the shared data
structure in the DHT; instead, the data structure is implied by the
history of operations in the logs, and L

∗ stores log records in the
DHT. A participant updates the data structure by appending records
to its log; a participant reads the current state of the data structure
by scanning all participants’ logs.

Logging allows participants to perform complex operations atom-
ically with respect to participant failure. The use of a log for each

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC ’03 Boston, Massachusetts, USA
Copyright 2003 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

participant mean that concurrent updates to the same data produce
some acceptable outcome reflecting the operations, rather than a
corrupted data structure. Logging operations also allow partici-
pants to undo un-wanted updates by a malicious participant retroac-
tively. Finally, because each participant is likely to update its log
within a single partition, after partitions merge, scanning the most
recent logs naturally merges updates from different partitions.

Consistency
The heart of L

∗ is its algorithm for resolving the order of log
records in different participants’ logs. This algorithm determin-
istically produces a single ordering of log records. That is, L

∗ al-
ways chooses the same order for every two log records for all par-
ticipants. This property means participants agree on the order of
completed updates, even if those updates were issued concurrently.
Participants can also use a mutual exclusion algorithm to ensure
atomicity for multi-step operations. The algorithm works by ap-
pending log records to a participant’s log and reading other logs.
Chen et al [2] describe properties of L

∗ in more detail.

Experience
We built a multi-user peer-to-peer read-write file system, Ivy [1],
that uses L

∗ to store all file system data and meta-data. The use of
per-participant logs allows Ivy to support concurrent updates to the
file system without using locks, and yet still maintain meta-data
consistency. Ivy implements most file system operations without
mutual exclusion; the only exceptions are file and directory cre-
ation. File and directory creation require mutual exclusion to avoid
duplicate files or directories. Despite its use of logs, L

∗ makes
it easy to build applications with good performance; Ivy caches
aggressively, and checks the validity of the whole cache just by
checking whether any logs have changed recently. A typical Ivy
operation involves checking the set of logs (in parallel) for new log
records, fetching new log records (if any), and then completing the
operation entirely from the local cache.

References
[1] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. Ivy:
A Read/Write Peer-to-peer File System. In Proceedings of the 5th
USENIX Symposium on Operating Systems Design and Implemen-
tation, Boston, Massachusetts. December, 2002.

[2] B. Chen, T. M. Gil, A. Muthitacharoen, and R. Morris. Build-
ing Data Structures on Untrusted Peer-to-Peer Storage with Per-
participant Logs. MIT Laboratory for Computer Science TR 888.
March, 2003.

