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Motivation

e Downloading big files in p2p systems (e.g. movies)

e Problem truncated downloads
- Transfer time of file >> average uptime
- Many more nodes with partial downloads than with complete
file
- Partial downloads tend to have overlapping information

- Suboptimal reconciliation protocols waste bandwidth

e Objectives
- Better bandwidth utilization = low overhead when reconciling

- High file availability (when source nodes leave network)

o Key idea: Rateless codes



Rateless codes

File n blocks
¢ Encoding Infinite encoding
Lossy channel
Received (1 + €)n blocks
¢ Decoding

Recovered n blocks w.h.p.




Efficient rateless codes

e Public:
- LT codes [Luby]

- Online codes [Maymounkov]

Online LT
Encoding time/block O(1) O(logn)
Blocks to decode (I+e)n | n+0(v/n)
Decoding O(n) O(nlogn)

e Proprietary

- Raptor codes [Shokrollahi, Digital Fountain]




Design of on-line codes
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Auxiliary blocks
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e Each message block is reflected in 3 random

auxiliary blocks



Check blocks
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Composite Message

e Each check block generated independently
e To generate check block with ID i::

- Seed pseudo-random generator with ¢
- Choose deg(c;) from a special distribution

- Set ¢; to XOR of deg(c;) random composite message blocks



Decoding algorithm
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e Repeat until entire original message recovered:

1. Find a check (auxiliary) block, s.t. all incorporated blocks are
known, except for one

2. Solve for it



Main idea

e Every transmitted block ID from source nodes is unique

- Sufficient information to recover the file accumulates quickly in the

network

- High file availability
e Exploit large check block ID space

- Observation: Nodes download many blocks from each other before

aborting connections

- Transmit data only in the form of check block streams

- Each stream concisely described by its ID s:

hs(0) hs(1) hs(2) hs(3) hs(4) hs(5)



Download state information

e Table of {stream, last_pos} pairs
i last _pos(s1)=5
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Downloading from a source node
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e Source nodes can generate blocks from any stream



Downloading from a partial-knowledge

node
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Conclusion

e Higher availability

- Only way for a knowledge overlap is, if blocks with same IDs
earlier came from the same non-source node

- Unavoidable! Optimal?

e Simple reconciliation

- Message cost = state table size

# of pairs in table < # of streams within life-cycle of a download

< # of truncated downloads within life-cycle

- Number can be bound



