Rateless Codes and Big Downloads

Petar Maymounkov and David Mazieres
http://kademlia.scs.cs.nyu.edu/

NYU Department of Computer Science

Motivation

e Downloading big files in p2p systems (e.g. movies)

e Problem truncated downloads
- Transfer time of file >> average uptime
- Many more nodes with partial downloads than with complete
file
- Partial downloads tend to have overlapping information

- Suboptimal reconciliation protocols waste bandwidth

e Objectives
- Better bandwidth utilization = low overhead when reconciling

- High file availability (when source nodes leave network)

o Key idea: Rateless codes

Rateless codes

File n blocks
¢ Encoding Infinite encoding
Lossy channel
Received (1 + €)n blocks
¢ Decoding

Recovered n blocks w.h.p.

Efficient rateless codes

e Public:
- LT codes [Luby]

- Online codes [Maymounkov]

Online LT
Encoding time/block O(1) O(logn)
Blocks to decode (I+e)n | n+0(v/n)
Decoding O(n) O(nlogn)

e Proprietary

- Raptor codes [Shokrollahi, Digital Fountain]

Design of on-line codes

B B B B B Original message blocks (n)

OUTER y /éu\xiliary blocks (0.01n)
HEEEEN Composite Message
INNER *

o0 R AR R AR B - Checkblocks

S 5 § Lossy channel

L HE B || Received check blocks (1 + €)n

INNER 1 *

BHEE B T Partially-recovered composite

message blocks
OUTER ™1 *

B B B B B Recovered original message

Auxiliary blocks

Auxiliary blocks
T

a; a2 asg Q4

Original message
blocks

Q
(Y
|

=1 DT D x3D Ty

g = T1 D T3 D T4 D 5

= T2 D T3
_5131@5132@333@334@335

SIS
~ W
.

e Each message block is reflected in 3 random

auxiliary blocks

Check blocks

C1 Cy C7
C1 =1 D x4
a1 Qas C4y = T2 D x3 D ay
N -/ C7 — [L‘5

Composite Message

e Each check block generated independently
e To generate check block with ID i::

- Seed pseudo-random generator with ¢
- Choose deg(c;) from a special distribution

- Set ¢; to XOR of deg(c;) random composite message blocks

Decoding algorithm

C1 Cy C3 Co C3 C3
a1 a1 ai
T1 2 3 15 . (L3 T1 . (U3
aq
4, 5.

7| B3 Ty Ty T3

e Repeat until entire original message recovered:

1. Find a check (auxiliary) block, s.t. all incorporated blocks are
known, except for one

2. Solve for it

Main idea

e Every transmitted block ID from source nodes is unique

- Sufficient information to recover the file accumulates quickly in the

network

- High file availability
e Exploit large check block ID space

- Observation: Nodes download many blocks from each other before

aborting connections

- Transmit data only in the form of check block streams

- Each stream concisely described by its ID s:

hs(0) hs(1) hs(2) hs(3) hs(4) hs(5)

Download state information

e Table of {stream, last_pos} pairs
i last _pos(s1)=5

st [l H N
i last _pos(s2)=3
2 [l [l B

s3

g last _pos(s3)=8

Downloading from a source node

Node v Source node s
IHER {v, last_pos(v)=3}
a1 1 ~

-

e Source nodes can generate blocks from any stream

Downloading from a partial-knowledge

node
Node v Node w
1 1111 vIHHN
4 1 1 4 11 J 111
1 1]
{v, last_pos(v)=5}
{x, last_pos(x)=3}
—
= 111

Conclusion

e Higher availability

- Only way for a knowledge overlap is, if blocks with same IDs
earlier came from the same non-source node

- Unavoidable! Optimal?

e Simple reconciliation

- Message cost = state table size

of pairs in table < # of streams within life-cycle of a download

< # of truncated downloads within life-cycle

- Number can be bound

