
GRAPH PARTITIONING USING SINGLE COMMODITY

FLOWS [KRV’06]

notes by Petar MAYMOUNKOV

Theme — The algorithmic problem of finding a sparsest cut
is related to the combinatorial problem of building expander
graphs from “simple” building blocks!

1. Preliminaries

We consider an undirected graph G defined on V = [n] and edge-weighted
by w(e) > 0. For S ⊆ V we use ∂S to be the set of edges with exactly one
endpoint in S. Define w(∂S) =

∑
e∈∂S w(e).

Definition 1.1. — The expansion of G is defined as

Φ(G) = min
S⊂V

w(∂S)
min{|S|, |Sc|}

(1.1)

Definition 1.2. — A single commodity flow ω between s 6= t ∈ V can

be viewed as ω ∈ RV×V , having the following properties:

(i) Skew symmetry:

ωxy = −ωyx, for all x, y ∈ V

(ii) Capacity

ωxy 6 w(x, y), for all x, y ∈ V
(iii) Conservation:∑

y

ωxy = 0, for all s, t 6= x, y ∈ V

(iv) Demand: ∑
y

ωsy = d, which implies
∑
y

ωty = −d

2 PETAR MAYMOUNKOV

Lemma 1.3 (Concentration of measure). — If v ∈ Rd and ζ is a random

unit vector in Rd, then

E (v∗ζ)2 =
‖v‖2

d
, and

Pr
[
(v∗ζ)2 > x‖v‖2/d

]
6 e−x/4, for x 6 d/16.

2. Embedding graphs by flow

Lemma 2.1. — If H
ξ7→ G, then Φ(H) 6 CξΦ(G).

Proof. — By assumption H routes in Cξ ·G with no congestion. Consider
any cut (S, Sc). If h ∈ E(H) is cut, then it contributes wH(h) to wH(∂S)
and at least wH(h) to wCξG(∂S). Thus wH(∂S) 6 wCξG(∂S), and

Φ(H) = min
S

wH(∂S)
min{|S|, |Sc|}

6 min
S

wCξG(∂S)
min{|S|, |Sc|}

= Φ(CξG) = CξΦ(G).

z

3. Main result

Theorem 3.1. — Given an undirected graph G and an expansion pa-

rameter α > 0, there is a randomized algorithm that w.h.p. outputs

(i) Either a cut (S, Sc) with Φ(S, Sc) 6 α,

(ii) or an expander H and an embeding H
ξ7→ G with congestion at most

O(log2 n/α)

Algorithm 3.1 (Main algorithm – conceptually). — On input G and α:

Build an expander graph H as the union of simple graphs

M1, . . . ,Mt. Try to embed each Mi in G with congestion 6
1/α. If success, then Φ(G) > α/t, otherwise an Mi fails to

embed, which uncovers a sparse cut.

4. Constructing expanding graphs incrementally

For a perfect matching µ, define the 1-step random walkWµ := 1/2·(I+µ),
where µ is viewed as an adjacency matrix. Let (M1, . . . ,Mt) be a sequence of
perfect matchings, and define the natural matching walk as the t-step walk
with transition matrix W = WMt · · ·WM1 .

3

Definition 4.1. — A matching walk is mixing iff 1∗xW1j > 1/2n for all

x, y ∈ [n].

Lemma 4.2 (Matching walk mixes — matching union expands). — If

(M1, . . . ,Mt) mixes, then Φ(
⋃t
i=1Mi) > 1/2.

Proof. — Consider the directed “time-line” graphH defined on {1, . . . , n}×
{0, . . . , t}, where for all i ∈ {1, . . . , n} and k ∈ {0, . . . , t− 1}

(i) (i, j) H∼ (i, j + 1), and
(ii) (i, j) H∼ (i′, j + 1) where i and i′ are matched by Mj+1.

Every edge in H is given capacity 1/2. The matching walk from x ∈ [n]
induces a flow of value 1 on H from (x, 0) to (1, t), . . . , (n, t). If the walk
mixes, the flow delivers at least 1/2n units to each (1, t), . . . , (n, t).

It is easy to see (using induction) that the simultaneous unit flows from
(1, 0), . . . , (n, 0) do not violate the edge capacities of H. Observe that the
vertex-projection of H onto {1, . . . , n} equals

⋃t
i=1Mi, and thus the simul-

taneous flow is realizable there as well.
For any (S, Sc) cut in [n] where S 6 n/2, this flow delivers at least
|S||n−S|/2n units to Sc. From here, the Min-cut Max-flow Theorem asserts
Φ(
⋃t
i=1Mi) > 1/2. z

We are going to use a potential function ψ(W) to measure how far W is
from mixing. For now ψ(W) is abstract.

5. Idea

I am betting that G has expansion > α:
(a) If I am right, i.e. α 6 Φ(G), I can build an expander as the union of

O(log2 n) matchings so that each embeds in G with congestion 6 1/α.
Thus, proving that G’s expansion is at least O(α/ log2 n)

(b) If I am wrong and Φ(G) 6 α 6 O(log2 n ·Φ(G)), I might be just lucky
enough that the matchings I need happen to be embedable in G with
congestion 6 1/α (i.e. I never happen to need a matching across the
sparsest cut), in which case I still prove that O(α/ log2 n) 6 Φ(G)

(c) However, if I am significantly off, i.e. O(log2 n ·Φ(G)) 6 α, then I am
bound to run into a cut sparser than α in my attempt to realize some
needed matching in G

6. Main algorithm

Here ψ(t) := ψ(WMt · · ·WM1).

4 PETAR MAYMOUNKOV

Algorithm 6.1 (Main). — On input G and α:

1. (Find-Bisection) Find a bisection (S, Sc) such that adding

any perfect matchingMt+1 between S and Sc to {M1, . . . ,Mt}
reduces the potential, in expectation, by 1−Θ(1/ log n),
i.e.

Eψ(t+ 1) 6 (1−Θ(1/ log n))ψ(t)

2. Using a maximum-flow procedure

(a) Either, produce a perfect matching Mt+1 that em-

beds in G with congestion 6 1/α,

(b) Or, find a cut in G of expansion at most α

6.0.1. What lies ahead

We’ll define a potential so if ψ 6 O(1/n2) then W is mixing, and thus the
algorithm terminates in at most O(log2 n) iterations w.h.p. thereby produc-
ing an embedding (M1, . . . ,MO(log2 n)) 7→ G with congestion O(log2 n)/α.

7. Find next best matching

Note, Find-Bisection has nothing to do with G. It’s an algorithm about
matchings and their mixing properties.

Algorithm 7.1 (Find-Bisection). — On input {M1, . . . ,Mt}, output a

bisection (S, Sc) so that the addition of any matching Mt+1 between S and

Sc brings the matching walk “significantly” closer to mixing:

— Choose ζ ∈ {±1}n randomly, so ζ⊥1
— Compute u = Wt . . .W1ζ, where Wi = 1/2 · (I +Mi)
— Form S from the first n/2 smallest entries of u

8. Single step random walks and mixing

The main object of study here is a positive and doubly stochastic matrix
P ∈ Rn×n which encodes a random walk step on [n].

Definition 8.1. — The 1-step walk P is mixing iff Pxy > 1/2n for all

x, y.

Definition 8.2. — Define the potential of P as

ψ(P) := ‖P − J/n‖2(8.1)

5

Remark 8.3. — The potential of P is intended to measure (upper-bound)
the `2 distance between “a 1-step random walk on P starting from a uniform
distribution” and “the uniform distribution”, i.e.

ψ′(P) := ‖P1/n− 1/n‖2(8.2)

This intention is justified by:

Lemma 8.4. — ψ(P) > nψ′(P)

Proof. —

ψ′(P) = ‖P1/n− 1/n‖2

= ‖P1/n− J1/n2‖2
(
where J = 11∗

)
= 1/n2 · ‖(P − J/n)1‖2

6 1/n‖P − J/n‖2
(
Cauchy-Schwarz or Frobenius norm

)
= ψ(P)/n

z

When ψ(P) is sufficiently small, the 1-step walk is mixing:

Lemma 8.5. — If ψ(P) 6 1/4n2 then Pxy > 1/2n for all x, y ∈ V .

9. Averaging transformation and matchings

All matchings in this text are perfect. For any self-inverse permutation
(or a matching, in particular) on [n] characterized by its matrix µ ∈ Rn×n,
consider the averaging transformation Wµ = 1/2 · (I + µ) applied to P .

Remark 9.1. — Note that WµP represents the random walk where the
first step is taken according to P and the second according to Wµ.

Lemma 9.2. — The composition WµP has the following properties:

(i) 1∗x(WµP) = 1∗y(WµP) for all x
µ∼ y,

(ii) (1x + 1y)∗(WµP)1 = (1x + 1y)∗P1, and

(iii) WµP is positive and doubly stochastic.

Lemma 9.3. —

ψ(P)− ψ
(
WµP

)
>

1
2

∑
x
µ∼y

‖(1x − 1y)∗P‖2

Proof. — Focus on contribution of x
µ∼ y. First,

1∗xWµP = 1∗yWµP =
1
2

(1x + 1y)∗P

6 PETAR MAYMOUNKOV

Write ψ(P) as
ψ(P) =

∑
x

‖1∗xP − 1/n‖2

Use the Parallelogram identity

‖f‖2 + ‖g‖2 =
1
2
‖f + g‖2 +

1
2
‖f − g‖2

to compute the contribution of x and y to ψ(WµP)− ψ(P) as

2‖1/2 · (1x + 1y)∗P − 1/n‖2

− ‖1∗xP − 1/n‖2 − ‖1∗yP − 1/n‖2 = ‖(1x − 1y)∗P‖2

z

10. Approximating potential reduction

For a random ζ ∈ {±1}n:

Lemma 10.1. — With high probability, for all x, y,

‖(1x − 1y)∗P‖2 >
n− 1

O(log n)
· |(1x − 1y)∗Pζ|(10.1)

Proof. — Use (1x − 1y)∗P⊥1 and ζ⊥1 and concentration of measure
lemma. z

Corollary 10.2. — With high probability,

ψ(P)− ψ
(
WµP

)
>

n− 1
O(log n)

·
∑
x
µ∼y

|(1x − 1y)∗Pζ|(10.2)

Remark 10.3. — The success probability in both statements above can be
chosen to be 1−n−C for any constant C (due to concentration of measure).

11. Isolating a cut of good matchings

We now additionally require ζ⊥1. Let u = Pζ and renumber its coordi-
nates so that u1 6 u2 6 · · · 6 un.

Lemma 11.1. — For any matching µ between {1, . . . , n/2} and {n/2 +
1, . . . , n},

E
∑
x
µ∼y

(ux − uy)2 >
ψ(P)
n− 1

(11.1)

7

Corollary 11.2. —

E
(
ψ(P)− ψ

(
WµP)

)
>

ψ(P)
O(log n)

(11.2)

Proof of Lemma 11.1. — Let η be the median of u1, . . . , un.∑
x
µ∼y

(ux − uy)2 >
∑
x
µ∼y

(
(ux − η)2 + (uy − η)2

)
=
∑
x

(ux − η)2

=
∑
x

u2
x − 2η

∑
x

ux + nη

>
∑
x

u2
x(†)

Step (†) follows from ζ⊥1 and the column-stochasticity of P as
∑
x ux =

1∗Pζ = 1∗ζ = 0.
Note that ux = 1∗xPζ =

(
1xP − 1∗/n

)
ζ, since ζ⊥1. Observe that wx :=

(1∗xP−1/n)⊥1, using row-stochasticity. And since ζ⊥1 and wx⊥1, applying
the concentration of measure lemma gives

Eu2
x =
‖1∗xP − 1/n‖2

n− 1
Thus,

E
∑
x
µ∼y

(ux − uy)2 > E
∑
x

u2
x

=
∑
x

‖1∗xP − 1/n‖2

n− 1

=
ψ(P)
n− 1

z

12. Finding a matching or a cut

For simplicity, assume G is unweighted.

Algorithm 12.1 (Cut-or-Flow). — The input is S ⊂ V with |S| = n/2
and maximum allowable congestion 1/α > 0:

1. Assign each edge in G capacity 1/α. Add a source node

with an outgoing unit-capacity arc to each vertex in S,

and add a sink node with an incoming unit-capacity arc

from each vertex in Sc.

8 PETAR MAYMOUNKOV

2. Find a maximum flow between the source and the sink

3. If the flow value is at least n/2, we produce a matching

between S and Sc, by decomposing the flow into flow

paths

4. Otherwise, we find a minimum cut separating the source

and the sink, and output the partition induced on V

Remark 12.1. — If a matching is found, then by construction it can be
embedded in G with congestion at most 1/α.

Lemma 12.2. — If the maximum flow-value between the source and the

sink is less than n/2, then the minimum cut in G has expansion less than α.

Proof. —

— If the maximum flow is < n/2 then the minimum cut (separating the
source and the sink) is also < n/2.

— Let the number (and capacity) of edges in the cut incident to the source
(and respectively sink) be ns (and nt).

— The remaining cut capacity is n/2−ns−nt, thus using at most α(n/2−
ns − nt) edges of G

— The cut separates > n/2 − ns vertices in S from > n/2 − nt vertices
in Sc, thus

ΦG(S, Sc) 6 α
n/2− ns − nt

min{n/2− ns, n/2− nt}
6 α

z

13. Running time and speedup via sparsification

Break down:
— O(log2 n) iterations w.h.p., each including:
— Find-Bisection in Õ(n),
— Single commodity flow in O(m3/2) using [3],
— Decomposition into paths in Õ(m)

In total Õ(n+m3/2). Can get Õ(m+ n3/2) using

Theorem 13.1 (Benczùr–Karger [2]). — Given a graph G with n vertices

and m edges and an error parameter ε > 0, there is a graph Ĝ such that

(i) Ĝ has O(n log n/ε2) edges and

(ii) The value of every cut in Ĝ is within (1±ε) factor of the correspond-

ing cut in G.

Ĝ can be constructed inO(m log2 n) time ifG is unweighted and inO(m log3 n)
time if G is weighted.

9

14. Authors’ conclusions and open problems

— The union of the flows corresponds to an embedding of a complete
graph

— Can this approach yield a (tight) O(log n) approximation for embed-
ding a complete graph?

— What about improving to a O(
√

log n) approximation algorithm by
embedding an arbitrary expander?

— Can this analysis be related to random collapsing process underlying
METIS?

15. Petar’s remarks

(1) Lower bound gap — When an embedding is found, the KRV algo-
rithm/analysis is insensitive to whether some subset of the matchings
can be embedded simultaneously (with congestion 6 1/α), which
would exhibit tighter lower-bound certificates

(2) Upper bound gap — consider the sparsest cut in a graph comprised
of two copies of Kn connected by an edge. Explain how the KRV
algorithm can succeed in finding an embedding when α = log2 n/n

(3) It is conceivable that for a choice of α in the critical region Φ(G) 6
α 6 O(log2 n · Φ(G)), multiple runs of the algorithm will eventually
find a sparser cut. But this needs to be proven and will most likely
happen with tiny probability (unless the graph has many sparsest
cuts)

(4) Is it possible to build an expander using o(log n) matchings? How
(Butterfly, de Bruijn)? If yes, then replicating the same argument
will give an approximation guarantee (using multi-commodity flow
to embed desired matchings, and multi-commodity duality to get a
cut otherwise). More on this in [4]

(5) The analysis in this paper is very much about expanders built from
matchings, and it is not tight because ψ 6 1/4n2 implies Pxy > 1/2n,
but the converse is not true. In other words, the needed condition is
‖J−P‖∞ 6 1−1/2n, but the enforced condition is ‖P−J/n‖2 6 1/2n

BIBLIOGRAPHY

[1] Khandekar, Rao, Vazirani, Graph partitioning using single commod-
ity flows, STOC’06

[2] Benczùr, Karger, Approximating s-t minimum cuts in Õ(n2) time,
STOC’96

10 PETAR MAYMOUNKOV

[3] Goldberg, Rao, Beyond the flow decomposition barrier, JACM’98
[4] Arora, Hazan, Kale, O(

√
log n) approximation to sparsest cut in

Õ(n2) time, FOCS’04

	1. Preliminaries
	2. Embedding graphs by flow
	3. Main result
	4. Constructing expanding graphs incrementally
	5. Idea
	6. Main algorithm
	6.0.1. What lies ahead

	7. Find next best matching
	8. Single step random walks and mixing
	9. Averaging transformation and matchings
	10. Approximating potential reduction
	11. Isolating a cut of good matchings
	12. Finding a matching or a cut
	13. Running time and speedup via sparsification
	14. Authors' conclusions and open problems
	15. Petar's remarks
	BIBLIOGRAPHY

