Building Distributed, Wide-Area
Applications with WheelFS

Jeremy Stribling, Emil Sit,
Frans Kaashoek, Jinyang Li, and Robert Morris

MIT CSAIL and NYU

Yo

Grid Computations Share Data

Nodes in a distributed computation share:
— Program binaries
— Initial input data

— Processed output from one node as
iIntermediary input to another node

So Do Users and Distributed Apps

« Shared home directory for testbeds (e.g.,
PlanetLab, RON)

 Distributed apps reinvent the wheel.
— Distributed digital research library

— Wide-area measurement experiments
— Cooperative web cache

 Can we invent a shared data layer once?

Our Goal

Distributed file system for testbeds/Grids

Testbed/Grid

Node
File

App can share data between nodes
Users can easily access data
Simple-to-build distributed apps

Current Solutions

Node

Copy
foo

@ e

Testbed/Grid

F|Ie entral

Usual drawbacks:
— All data flows through one node

— File systems are too transparent
e Mask failures
 Incur long delays

Our Proposal: WheelFS

e A decentralized, wide-area FS
 Main contributions:

1) Provide good performance according to
Read Globally, Write Locally

2) Give apps control with semantic cues

Talk Outline

1. How to decentralize your file system
2. How to control your files

What Does a File System Buy You?

o A familiar interface
 Language-independent usage model

* Hierarchical namespace useful for apps
e Quick-prototyping for apps

File Systems 101

App 1 App 2 Node
il N
Operating System » Flle System

Local
hard disk

* File system (FS) API:
- Open <filename> > <file id>
—{Close/Read/Write} <file_id>

e Directories translate file names to IDs

Distributed File Systems

Testbed/Grid
App 1 App 2 Node
il N
Operating System » Flle System

Local
hard disk
File

Dir 500:

“foo0” = 135
=

10

Basic Design of WheelFS

Node Node
653 076
135

. File 135
File Node
155 150 Node
4 554
/
Q Q C 076 150
<::> Node
402

257 402
O 554 653

KCOﬂSlstency Servérs

135
v3 I

1135
v3

File
135
v3

11

Read Globally, Write Locally

* Perform writes at local disk speeds
« Efficient bulk data transfer
* Avoid overloading nodes w/ popular files

12

1. Choose an ID
2. Create dir entry
3. Write local file

Write Locally
&

5 foo/bar

\%O
Node
402

File
550
(bar)

13

Read Globally

1. Contact node
2. Recelve list
3. Get chunks

Read
file 135

File
135

14

Example: BLAST

DNA alignment tool run on Grids

Copy separate DB portions and gueries to
many nodes

Run separate computations
Later fetch and combine results

15

Example: BLAST

e With WheelFS, however:

— No explicit DB copying necessary
— Efficient initial DB transfers
— Automatic caching for reused DBs and queries

e Could be better since data Is never updated

16

Example: Cooperative Web Cache

Collection of nodes that:
— Serve redirected web requests
— Fetch web content from original web servers
— Cache web content and serve it directly
— Find cached content on other CWC nodes

17

Example: Cooperative Web Cache

if [-f /wfs/cwc/$URL]; then
if notexpired /wfs/cwc/$URL; then
cat /wfs/cwc/$SURL G
exit
fi
fi
wget SURL -O - | tee /wfs/cwc/SURL |

* Avoid hotspots

18

Example: Cooperative Web Cache

Client
OOO

Dir
070
(/wfs/cwc)

4

N

Chunk

Talk Outline

1. How to decentralize your file system
2. How to control your files

20

Example: Cooperative Web Cache

if [-f /wfs/cwc/$URL]; then -
if notexpired /wfs/cwc/$SURL; then |
cat /wfs/cwc/$URL
exit
fi
fi
wget SURL -O - | tee /wfs/cwc/$SURL

 Would rather fail and refetch than wait
* Perfect consistency isn’t crucial

21

Explicit Semantic Cues

Allow direct control over system behavior
Meta-data that attach to files, dirs, or refs
Apply recursively down dir tree

Possible impl: intra-path component
— /wfs/cwc/.cue/foo/bar

22

Semantic Cues: Writability
« Applies to files

 WriteMany (default)
 WriteOnce

23

Semantic Cues: Freshness

Applies to file references
LatestVersion (default)

AnyVersion
BestVersion

""""""
-c':!---l':_h

File
135

24

Semantic Cues: Write Consistency
* Applies to files or directories

o Strict (default)
e Lax

Example: BLAST

o WriteOnce for all:
— DB files
— Query files
— Result files
* Improves cachabillity of these files

26

Example: Cooperative Web Cache

 Reading an older version Is ok:
- cat /wfs/cwc/.maxtime=250,bestversion/foo

« \Writing conflicting versions Is ok:
- wget http://foo > /wfs/cwc/.lax,writemany/foo

if [-f /wfs/cwc/.maxtime=250,bestversion/$URL]; then
if notexpired /wfs/cwc/.maxtime=250,bestversion/$URL; then
cat /wfs/cwc/.maxtime=250,bestversion/$URL
exit
fi
fi
wget $URL -O - | tee /wfs/cwc/.lax,writemany/$URL

27

Discussion
 Must break data up into files small enough
to fit on one disk

o Stuff we swept under the rug:
— Security
— Atomic renames across dirs
— Unreferenced files

28

Related Work

e Every FS paper ever written

o Specifically:
— Cluster FS: Farsite, GFS, xFS, Ceph
— Wide-area FS: JetFile, CFS, Shark
— Grid: LegionFS, GridFTP, IBP

— POSIX I/0O High Performance Computing
Extensions

29

Conclusion

 WheelFS: distributed storage layer for
newly-written applications

* Performance by reading globally and
writing locally

« Control through explicit semantic cues

g}

30

