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Grid Computations Share Data

Nodes in a distributed computation share:
— Program binaries
— Initial input data

— Processed output from one node as
iIntermediary input to another node




So Do Users and Distributed Apps

« Shared home directory for testbeds (e.g.,
PlanetLab, RON)

 Distributed apps reinvent the wheel.
— Distributed digital research library

— Wide-area measurement experiments
— Cooperative web cache

 Can we invent a shared data layer once?



Our Goal

Distributed file system for testbeds/Grids
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App can share data between nodes
Users can easily access data
Simple-to-build distributed apps



Current Solutions
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Usual drawbacks:
— All data flows through one node

— File systems are too transparent
e Mask failures
 Incur long delays




Our Proposal: WheelFS

e A decentralized, wide-area FS
 Main contributions:

1) Provide good performance according to
Read Globally, Write Locally

2) Give apps control with semantic cues



Talk Outline

1. How to decentralize your file system
2. How to control your files



What Does a File System Buy You?

o A familiar interface
 Language-independent usage model

* Hierarchical namespace useful for apps
e Quick-prototyping for apps



File Systems 101
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* File system (FS) API:
- Open <filename> > <file id>
—{Close/Read/Write} <file_id>

e Directories translate file names to IDs



Distributed File Systems
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Basic Design of WheelFS
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Read Globally, Write Locally

* Perform writes at local disk speeds
« Efficient bulk data transfer
* Avoid overloading nodes w/ popular files
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1. Choose an ID
2. Create dir entry
3. Write local file

Write Locally
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Read Globally

1. Contact node
2. Recelve list
3. Get chunks

Read
file 135

File
135
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Example: BLAST

DNA alignment tool run on Grids

Copy separate DB portions and gueries to
many nodes

Run separate computations
Later fetch and combine results
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Example: BLAST

e With WheelFS, however:

— No explicit DB copying necessary
— Efficient initial DB transfers
— Automatic caching for reused DBs and queries

e Could be better since data Is never updated
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Example: Cooperative Web Cache

Collection of nodes that:
— Serve redirected web requests
— Fetch web content from original web servers
— Cache web content and serve it directly
— Find cached content on other CWC nodes
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Example: Cooperative Web Cache

if [ -f /wfs/cwc/$URL ]; then
if notexpired /wfs/cwc/$URL; then
cat /wfs/cwc/$SURL G
exit
fi
fi
wget SURL -O - | tee /wfs/cwc/SURL |

* Avoid hotspots
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Example: Cooperative Web Cache
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Talk Outline

1. How to decentralize your file system
2. How to control your files
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Example: Cooperative Web Cache

if [ -f /wfs/cwc/$URL ]; then -
if notexpired /wfs/cwc/$SURL; then |
cat /wfs/cwc/$URL
exit
fi
fi
wget SURL -O - | tee /wfs/cwc/$SURL

 Would rather fail and refetch than wait
* Perfect consistency isn’t crucial
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Explicit Semantic Cues

Allow direct control over system behavior
Meta-data that attach to files, dirs, or refs
Apply recursively down dir tree

Possible impl: intra-path component
— /wfs/cwc/.cue/foo/bar
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Semantic Cues: Writability
« Applies to files

 WriteMany (default)
 WriteOnce
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Semantic Cues: Freshness

Applies to file references
LatestVersion (default)

AnyVersion
BestVersion

""""""
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Semantic Cues: Write Consistency
* Applies to files or directories

o Strict (default)
e Lax




Example: BLAST

o WriteOnce for all:
— DB files
— Query files
— Result files
* Improves cachabillity of these files
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Example: Cooperative Web Cache

 Reading an older version Is ok:
- cat /wfs/cwc/.maxtime=250,bestversion/foo

« \Writing conflicting versions Is ok:
- wget http://foo > /wfs/cwc/.lax,writemany/foo

if [ -f /wfs/cwc/.maxtime=250,bestversion/$URL ]; then
if notexpired /wfs/cwc/.maxtime=250,bestversion/$URL; then
cat /wfs/cwc/.maxtime=250,bestversion/$URL
exit
fi
fi
wget $URL -O - | tee /wfs/cwc/.lax,writemany/$URL
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Discussion
 Must break data up into files small enough
to fit on one disk

o Stuff we swept under the rug:
— Security
— Atomic renames across dirs
— Unreferenced files
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Related Work

e Every FS paper ever written

o Specifically:
— Cluster FS: Farsite, GFS, xFS, Ceph
— Wide-area FS: JetFile, CFS, Shark
— Grid: LegionFS, GridFTP, IBP

— POSIX I/0O High Performance Computing
Extensions
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Conclusion

 WheelFS: distributed storage layer for
newly-written applications

* Performance by reading globally and
writing locally

« Control through explicit semantic cues

g}
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